K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2021

a) Ta có: ( x2 -1 )( x2 + 2x )

= x2( x2 + 2x ) - ( x2 + 2x )

= x4 + 2x3 - x2 - 2x

b) Ta có ( x + 3 )( x2 + 3x -5 )

= x( x2 + 3x -5 ) + 3( x2 + 3x -5 )

= x3 + 3x2 - 5x + 3x2 + 9x - 15

= x3 + 6x2 + 4x - 15

c) Ta có ( x -2y )( x2y2 - xy + 2y )

= x( x2y2 - xy + 2y ) - 2y( x2y2 - xy + 2y )

= x3y2 - x2y + 2xy - 2x2y3 + 2xy2 - 4y2

d) Ta có ( 1/2xy -1 )( x3 -2x -6 )

= 1/2xy( x3 -2x -6 ) - ( x3 -2x -6 )

= 1/2x4y - x2y - 3xy - x3 + 2x + 6

a: \(\dfrac{\left(x+1\right)}{x^2+2x-3}=\dfrac{\left(x+1\right)}{\left(x+3\right)\cdot\left(x-1\right)}=\dfrac{\left(x+1\right)\left(x+2\right)\left(x+5\right)}{\left(x+3\right)\left(x-1\right)\left(x+2\right)\left(x+5\right)}\)

\(\dfrac{-2x}{x^2+7x+10}=\dfrac{-2x}{\left(x+2\right)\left(x+5\right)}=\dfrac{-2x\left(x+3\right)\left(x-1\right)}{\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x-1\right)}\)

b: \(\dfrac{x-y}{x^2+xy}=\dfrac{x-y}{x\left(x+y\right)}=\dfrac{y^2\left(x-y\right)}{xy^2\left(x+y\right)}\)

\(\dfrac{2x-3y}{xy^2}=\dfrac{\left(2x-3y\right)\left(x+y\right)}{xy^2\left(x+y\right)}\)

c: \(\dfrac{x-2y}{2}=\dfrac{\left(x-2y\right)\left(x-xy\right)}{2\left(x-xy\right)}\)

\(\dfrac{x^2+y^2}{2x-2xy}=\dfrac{x^2+y^2}{2\left(x-xy\right)}\)

 

21 tháng 10 2021

a: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1+4-2\left(4x^2-12x+9\right)\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

e: \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)=8x^3+27y^3\)

a) Ta có: \(\left(5x-2y\right)\left(x^2-xy+1\right)\)

\(=5x^3-5x^2y+5x-2x^2y+2xy^2-2y\)

\(=5x^3-7x^2y+2xy^2+5x-2y\)

b) Ta có: \(\left(x-1\right)\left(x+1\right)\left(x+2\right)\)

\(=\left(x^2-1\right)\left(x+2\right)\)

\(=x^3+2x^2-x-2\)

c) Ta có: \(\dfrac{1}{2}x^2y^2\cdot\left(2x+y\right)\left(2x-y\right)\)

\(=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)\)

\(=2x^4y^2-\dfrac{1}{2}x^2y^4\)

a) Ta có: \(\left(x+2y\right)\left(x^2-2xy+4y^2\right)-\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3+\left(2y\right)^3-\left(x^3-y^3\right)\)

\(=x^3+8y^3-x^3+y^3\)

\(=9y^3\)

b) Ta có: \(\left(x+1\right)\left(x-1\right)^2-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=\left(x+1\right)\left(x^2-2x+1\right)-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=x^3-2x^2+x+x^2-2x+1-\left(x^3+8\right)\)

\(=x^3-x^2-x+1-x^3-8\)

\(=-x^2-x-7\)

17 tháng 10 2021

a: Ta có: \(\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)

\(=4x^2-4x+1-2\left(4x^2-12x+9\right)+4\)

\(=4x^2-4x+5-8x^2+24x-18\)

\(=-4x^2+20x-13\)

b: \(\left(3x+2\right)^2+2\left(3x+2\right)\left(1-2y\right)+\left(1-2y\right)^2\)

\(=\left(3x+2+1-2y\right)^2\)

\(=\left(3x-2y+3\right)^2\)

4 tháng 8 2023

\(a,VP=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ =\left(x+2y\right)\left[x^2-x.2y+\left(2y\right)^2\right]\\ =x^3+\left(2y\right)^3=x^3+8y^3=VT\left(đpcm\right)\\ b,VT=\left(x-y\right)\left(x^2+xy+y^2\right)-3xy\left(x-y\right)\\ =x^3-y^3-3xy\left(x-y\right)\\ =x^3-3x^2y+3xy^2-y^3\\ =\left(x-y\right)^3=VP\left(đpcm\right)\)

4 tháng 8 2023

\(c,VT=\left(x-3y\right)\left(x^2+3xy+9y^2\right)-\left(3y+x\right)\left(9y^2-3xy+x^2\right)\\ =\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]-\left(x+3y\right).\left[x^2-x.3y+\left(3y\right)^2\right]\\ =x^3-27y^3-\left(x^3+27y^3\right)\\ =-54y^3=VP\left(đpcm\right)\)

23 tháng 3 2017

2,

M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y

= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3

= 2x2 + 4xyz - y +2.

M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)

= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y

= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3

= -8x2 + 2xyz + 10xy + y - 4.

N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)

= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1

= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1

= 8x2 - 2xyz - 10xy - y + 4.

3,

a) P + (x2 – 2y2) = x2 – y2 + 3y2 – 1

P = (x2 – y2 + 3y2 – 1) - (x2 – 2y2)

P = x2 – y2 + 3y2 – 1 - x2 + 2y2

P = x2 – x2 – y2 + 3y2 + 2y2 – 1

P = 4y2 – 1.

Vậy P = 4y2 – 1.

b) Q – (5x2 – xyz) = xy + 2x2 – 3xyz + 5

Q = (xy + 2x2 – 3xyz + 5) + (5x2 – xyz)

Q = xy + 2x2 – 3xyz + 5 + 5x2 – xyz

Q = 7x2 – 4xyz + xy + 5

Vậy Q = 7x2 – 4xyz + xy + 5.

4,

a, Thu gọn : x2+2xy-3x3+2y3+3x3-y3

= x2+2xy+(-3x3+3x3)+2y3-y3

=x2+2xy+2y3-y3

Thay x=5,y=4 vào đa thức x2+2xy+2y3-y3 Ta có:

52 + 2.5.4 + 43 = 25 + 40 + 64 = 129.

Vậy giá trị của đa thức x2+2xy+2y3-y3 tại x=5,y=4 là 129

b,

Thay x = -1; y = -1 vào biểu thức xy-x2y2+x4y4-x6y6+x8y8 Ta Có

M = (-1)(-1) - (-1)2.(-1)2 + (-1)4. (-1)4-(-1)6.(-1)6 + (-1)8.(-1)8

= 1 -1 + 1 - 1+ 1 = 1.

Vậy giá trị của biểu thức xy-x2y2+x4y4-x6y6+x8y8 tại x=-1, y=-1 là 1

5,

a, C=A+B

C = x2 – 2y + xy + 1 + x2 + y - x2y2 - 1

C = 2x2 – y + xy - x2y2

b) C + A = B => C = B - A

C = (x2 + y - x2y2 - 1) - (x2 – 2y + xy + 1)

C = x2 + y - x2y2 - 1 - x2 + 2y - xy - 1

C = - x2y2 - xy + 3y - 2.


16 tháng 3 2017

dễ mà , có khó đâu bạn

25 tháng 12 2021

b: \(=\dfrac{-x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-x}{x+y}\)

25 tháng 12 2021

\(a,=\dfrac{2\left(x-y\right)}{x\left(x-2y\right)}\\ b,=\dfrac{x\left(x-y\right)}{-\left(x-y\right)\left(x+y\right)}=-\dfrac{x}{x+y}\)