Cho hình vuông ABCD . Và Một điểm E bất kì thuộc cạnh AB . Gọi F là giao điểm của DE và BC .
Chứng minh : 1/DA2 = 1/DE2 + 1/DF2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình
vẽ thêm Dựng đứng D đường thẳng vuông góc với DE cắt BC tại P
Trong tam giác DPF ta có :(theo đlý số 4 hệ thức lượng)
----> 1/CD2 =1/DP2 +1/DF2
mà CD = DA(cạnh hình vuông )
-----> ^D1 =^D2 (2 góc tương ứng )
---__> tam giác DAE= tam giác DCP
------> DE=DP( 2 góc tương ứng ) ----> 1/ DA2 =1/DE2 + 1/DF2
a.
Xét hai tam giác vuông ABE và ADH:
\(AD=AB\)
\(\widehat{BAE}=\widehat{DAH}\) (cùng phụ \(\widehat{DAE}\))
\(\Rightarrow\Delta_vABE=\Delta_vADH\) (góc nhọn-cạnh góc vuông) (1)
\(\Rightarrow AH=AE\)
\(\Rightarrow\Delta AHE\) vuông cân tại A
b. Cũng từ (1) ta có \(BE=DH\)
Xét hai tam giác vuông ABE và FDA có:
\(\widehat{BAE}=\widehat{AFD}\) (so le trong)
\(\Rightarrow\Delta_vABE\sim\Delta_vFDA\)
\(\Rightarrow\dfrac{AB}{DF}=\dfrac{BE}{AD}\Rightarrow AB.AD=BE.DF\Rightarrow AB^2=HD.DF\) (do AD=AB và BE=HD)
c. Ta có: \(\left\{{}\begin{matrix}S_{HAF}=\dfrac{1}{2}AH.AF\\S_{HAF}=\dfrac{1}{2}AD.HF\end{matrix}\right.\) \(\Rightarrow AH.AF=AD.HF\)
\(\Rightarrow\dfrac{1}{AD}=\dfrac{HF}{AH.AF}\Rightarrow\dfrac{1}{AD^2}=\dfrac{HF^2}{AH^2.AF^2}=\dfrac{AH^2+AF^2}{AH^2.AF^2}\)
\(\Leftrightarrow\dfrac{1}{AD^2}=\dfrac{1}{AF^2}+\dfrac{1}{AH^2}=\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) (do AH=AE theo chứng minh câu a)
\(\Leftrightarrow\dfrac{1}{AE^2}+\dfrac{1}{AF^2}=\dfrac{1}{a^2}\) cố định (đpcm)
Lời giải:
Tứ giác $AEDF$ có 3 góc vuông $\widehat{E}=\widehat{A}=\widehat{F}=90^0$ nên $AEDF$ là hình chữ nhật.