Cho tam giác ABC vuông cân ở A. Trên nửa mặt phẳng bờ BC không chứa đỉnh A, vẽ BD vuông góc BC và BD= BC
a) Tứ giác ABCD là hình gì? Vì sao?
b) AB= 5 cm. Tính CD.
vẽ hình giúp mik lun nha:))cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ △ABC vuông cân tại A \(\Rightarrow\hat{ABC}=\hat{ACB}=45\text{°}\)
△BDC có \(\hat{CBD}=90\text{°};BC=BD\)
⇒ △BDC vuông cân tại B \(\Rightarrow\hat{BDC}=\hat{BCD}=45\text{°}\)
Mà: \(\hat{ACD}=\hat{ACB}+\hat{BCD}=45\text{°}+45\text{°}=90\text{°}\)
Tứ giác ABCD có:
\(\begin{matrix}AB\perp AC\\CD\perp AC\end{matrix}\Rightarrow AB\text{//}CD;\hat{BAC}=90\text{°}\)
Vậy: ABCD là hình thang vuông
===========
b/ Áp dụng đ/l Pytago cho △ABC \(\Rightarrow BC=\sqrt{5^2+5^2}=\sqrt{50}\left(cm\right)\) \(\left(AB=AC\right)\)
- Do \(BC=BD\)
Áp dụng đ/l Pytago cho △BCD \(\Rightarrow CD=\sqrt{\sqrt{50}^2+\sqrt{50}^2}=10\left(cm\right)\)
Vậy: \(CD=10cm\)
a) ( ABC vuông cân tại A (gt) ( ( ACB = 450
( BCD vuông cân tại B ( ( BCD = 450
( ( ACD = ( ACB + ( BCD = 900
Ta có AB ( AC; CD ( AC ( AB // AC ( ABCD là hình thang vuông.
b) ( ABC vuông ở A, theo định lý Pi Ta Go ta có
BC2 = AB2 + AC2 = 52 + 52 = 50
Trong ( vuông BCD ta lại có:
CD2 = BC2 + BD2 = 50 + 50 = 100 ( CD = 10 cm
Xét ΔBCD vông cân tại A(gt)
=>^BCD=45
Xét ΔABC vuông cân tại A(gt)
=>^ACB=45
Do đó: ^ACB=^BCD=45. Mà hai góc này ở vị trí soletrong
=>AB//CD
=> tứ giác ABDC là hình thang
b) Xét ΔABC vuông tại A(gt)
=>BC^2=AB^2+AC^2(theo định lí pytago)
=>BC^2=2AB^2=2.5^2=2.25=50
=>BC=\(\sqrt{50}\)
Xét ΔBDC vuông tại B(gt)
=>DC^2=BD^2+BC^2(theo định lí pytago)
=>DC^2=2BC^2=2. \(\left(\sqrt{50}\right)^2\) =2.50=100
=>DC=10
Xét tam giác ABC vuông tại A có góc ABC = 45 độ
Xét tam giác BCD vuông tại B có góc BCD = 45 độ
=> góc ABC = góc BCD = 45 độ
Mà hai góc này ở vị trí so le trong
=> AB // CD
=> tam giác ABCD là hinh thang
Mà góc A = 90 độ
=> ABCD là hình thang vuông
b, Ta có AB = 5cm
=> AC = 5cm
Áp dụng định lý pytago vào tam giác ABC vuông tại A ta có:
BC^2 = AB^2 + AC^2
=> BC^2 = 5^2 + 5^2 = 50
=> BC = căn bậc 2 của 50
Mà BD = BC => BD = BC = căn bậc 2 của 50
Áp dụng định lý pytago vào tam giác BCD vuông tại B ta có
CD^2 = BC^2 + BD^2
=> CD ^2 = ( căn bậc 2 của 50) ^2 + ( căn bậc 2 của 50)^2 = 100 ( cm)
Suy ra CD = 10 ( cm)
Note : hình ảnh chỉ mag tính chất minh họa@@
Đúng thì k cho mik nha
hc tốt^^