K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2019

Cái này là BĐT Bunhiacopxki đó bạn haha

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+b^2y^2+b^2x^2+a^2y^2\ge a^2x^2+b^2y^2+2axby\)

\(\Leftrightarrow b^2x^2+a^2y^2\ge2axby\)

\(\Leftrightarrow\left(bx-ay\right)^2\ge0\) ( luôn đúng )

\(\Rightarrowđpcm\)

11 tháng 2 2019

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2\ge a^2x^2+b^2y^2+2axby\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-b^2y^2-2axby\ge0\)

\(\Leftrightarrow a^2y^2+b^2y^2-2axby\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) ( bất đẳng thức luôn đúng )

Vậy ................

10 tháng 2 2019

nếu:\(|x|=0\Rightarrow x=0\)

\(|x|>0\Rightarrow x>0\)

vây \(|x|\ge0\)

19 tháng 9 2016

Từ giả thiết : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Rightarrow xy+yz+zx=xyz\)

Ta có : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)

Vì hai vế luôn dương nên ta bình phương hai vế được : 

\(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\ge\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)

Xét \(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\)

\(=\left(x+y+z\right)+\left(xy+yz+zx\right)+2\left(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\right)\)

Xét \(\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)

\(=xyz+\left(x+y+z\right)+2\left(x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

Suy ra : \(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\ge\)

\(\ge x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) (*)

Mà theo bất đẳng thức Bunhiacopxki , ta có : 

\(\sqrt{\left(x+yz\right)}.\sqrt{y+zx}\ge\sqrt{xy}+\sqrt{yz.zx}=\sqrt{xy}+z\sqrt{xy}\) (1)

\(\sqrt{y+zx}.\sqrt{z+xy}\ge\sqrt{yz}+x\sqrt{yz}\)(2)

\(\sqrt{z+xy}.\sqrt{x+yz}\ge\sqrt{xz}+y\sqrt{xz}\)(3)

Cộng (1) , (2) và (3) theo vế ta được (*) đúng

Vậy bđt ban đầu được chứng minh.

19 tháng 9 2016

chịu thua

29 tháng 3 2016

-3x2 + 6x -y2 +6y -12

<=> (-3x2 +6x -3) +( -y2 + 6y - 9)

<=> -3(x2 -2x +1) - (y2 -6y +9)

<=> -3(x-1)2 - (y-3)2

mà -3(x-1)2>=0

-(y-3)2>=0

=> dpcm

29 tháng 3 2016

= -3(x^2-2x+1)-(y^2-6y+9)

=-3(x-2)^2-(y-3)^2 nhỏ hơn hoặc bằng 0

18 tháng 11 2019

Ta có: \(f\left(x\right)=ax^2+bx+c\)

\(\Rightarrow f\left(-2\right)=4a-2b+c\)

\(f\left(3\right)=9a+3b+c\)

\(\Rightarrow f\left(-2\right)+f\left(3\right)=13a+b+2c=0\)(vì 13a+b+2c=0)

\(\Rightarrow f\left(-2\right)=-f\left(3\right)\)

\(\Rightarrow f\left(-2\right).f\left(3\right)=-\left[f\left(-2\right)\right]^2\le0\)( đpcm)

9 tháng 11 2016

a)\(\left|x+y\right|\le\left|x\right|+\left|y\right|\left(1\right)\)

Bình phương 2 vế của (1) ta được:

\(\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)

\(\Leftrightarrow x^2+2xy+y^2\le x^2+2\left|xy\right|+y^2\)

\(\Leftrightarrow xy\le\left|xy\right|\) (Đpcm)

Dấu = khi \(xy\ge0\)

b)\(\left|x-y\right|\ge\left|x\right|-\left|y\right|\)

\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x\right|\)

Áp dụng câu a ta có:

\(\Rightarrow\left|x-y\right|+\left|y\right|\ge\left|x-y+y\right|=\left|x\right|\) (luôn đúng)

Suy ra đpcm