√(-3x+5)^2=√(9x^2-25)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(3\left(3x-5\right)=9x^2-25\\ \Leftrightarrow9x^2-9x-10=0\\ \Leftrightarrow\left(3x\right)^2-2.3x.\dfrac{3}{2}+\dfrac{9}{4}=\dfrac{49}{4}\\ \Leftrightarrow\left(3x-\dfrac{3}{2}\right)^2=\dfrac{49}{4}\\ \Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{3}{2}=\dfrac{7}{2}\\3x-\dfrac{3}{2}=\dfrac{-7}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=5\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{-2}{3}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do \(5x^2+8x+25=4x^2+x^2+8x+16+9=4x^2+\left(x+4\right)^2+9>0;\forall x\)
Nên phương trình tương đương:
\(5x^2+8x+25=3x^2-9x-5\)
\(\Leftrightarrow2x^2+17x+30=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=-\dfrac{5}{2}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\left(x+2\right)^2-25=0\)
\(\Leftrightarrow\left(x+2\right)^2=25\\ \Leftrightarrow x+2=\pm5\)
Xét 2 trường hợp:
\(\)*\(x+2=5\\ \Leftrightarrow x=3\)
*\(x+2=-5\\ \Leftrightarrow x=-7\)
Vậy......
\(b,x\left(9x-1\right)-\left(3x+5\right)\left(3x-5\right)=1\)
\(\Leftrightarrow9x^2-x-\left(9x^2-25\right)=1\\ \Leftrightarrow9x^2-x-9x^2+25=1\\ \Leftrightarrow-x+25=1\\ \Leftrightarrow-x=1-25\\ \Leftrightarrow-x=-24\\ \Leftrightarrow x=24\)
Vậy.........
\(a.\left(x+2\right)^2-25=0\Leftrightarrow\left(x+2\right)^2=25\)
\(\Leftrightarrow x+2=\sqrt{25}=\pm5\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=5\\x+2=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{x_1=-7;x_2=3\right\}\)
\(b.x\left(9x-1\right)-\left(3x+5\right)\left(3x-5\right)=1\)
\(\Leftrightarrow9x^2-x-\left(9x^2-25\right)=1\)
\(\Leftrightarrow-x+25=1\Leftrightarrow-x=-24\)
\(\Leftrightarrow x=24\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(9x^2-30x+25=0\)
\(\Leftrightarrow3x-5=0\)
hay \(x=\dfrac{5}{3}\)
c: \(9x^2-25=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
a) \(9x^2-30x+25=0\Rightarrow\left(3x-5\right)^2=0\Rightarrow x=\dfrac{5}{3}\)
b) \(25x^2-5x+\dfrac{1}{4}=0\Rightarrow\left(10x-1\right)^2=0\Rightarrow x=\dfrac{1}{10}\)
c) \(9x^2-25=0\Rightarrow\left(3x-5\right)\left(3x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
d) \(\left(2x-1\right)^2-\left(3x+2\right)^2=0\)
\(\Rightarrow\left(2x-1+3x+2\right)\left(2x-1-3x-2\right)=0\)
\(\Rightarrow-\left(5x+1\right)\left(5x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(=\dfrac{3\left(x+1\right)\left(3x-5\right)}{-\left(3x-5\right)\left(3x+5\right)}=\dfrac{-3\left(x+1\right)}{3x+5}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
( 2x + 1 )3 - ( 3x + 2 )2 = ( 2x - 5 )( 4x2 + 10x + 25 ) + 6x( 2x + 1 ) - 9x2
⇔ 8x3 + 12x2 + 6x + 1 - ( 9x2 + 12x + 4 ) = 8x3 - 125 + 12x2 + 6x - 9x2
⇔ 8x3 + 12x2 + 6x + 1 - 9x2 - 12x - 4 = 8x3 + 3x2 + 6x - 125
⇔ 8x3 + 3x2 - 6x - 3 = 8x3 + 3x2 + 6x - 125
⇔ 8x3 + 3x2 - 6x - 3 - 8x3 - 3x2 - 6x + 125 = 0
⇔ -12x + 122 = 0
⇔ -12x = -122
⇔ x = 61/6
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ĐKXĐ:x\ge\frac{5}{3}\)
\(\sqrt{\left(-3x+5\right)^2}=\sqrt{9x^2-25}\)
\(\left|-3x+5\right|=\sqrt{\left(3x-5\right)\left(3x+5\right)}\)
\(3x-5=\sqrt{3x-5}\sqrt{3x+5}\)
\(TH1:3x-5=0< =>x=\frac{5}{3}\)
\(0=0.\sqrt{3x+5}\)(luôn đúng)
\(TH2:3x-5\ne0\)
\(3x-5=\sqrt{3x-5}\sqrt{3x+5}\)
\(\sqrt{3x-5}=\sqrt{3x+5}\)
\(3x-5=3x+5\)
\(-5=5\left(KTM\right)\)phương trình vô nghiệm
vậy pt có nghiệm duy nhất là \(x=\frac{5}{3}\)