Tìm M
3x2=3xy-x3-M=3x2=2xy-4y2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M - \(^{\left(x^2y-1\right)}\)= -2\(x^3\)+\(x^2y\)+1
=> M= (-2\(x^3\)+\(x^2y\)+1) + \(^{\left(x^2y-1\right)}\)
=> M= -2\(x^3\)+\(x^2y\)+1+ \(^{x^2y-1}\)
=> M= -2\(x^3\)+(\(x^2y+x^2y\))+1-1
=> M= -2\(x^3\)+\(2x^2y\)
b) \(3x^2+3xy-3x^3-M=3x^2+2xy-4y^2\)
=> \(M=\left(3x^2+3xy-3x^3\right)-\left(3x^2+2xy-4y^2\right)\)
\(=>M=3x^2+3xy-3x^3-3x^2-2xy+4y^2\)
\(=>M=\left(3x^2-3x^2\right)+\left(3xy-2xy\right)-3x^3+4y^2\)
\(=>M=xy-3x^3+4y^2\)
Hơi muộn nhưng mong bạn tick cho mình
a.
$12x^3y-24x^2y^2+12xy^3=12xy(x^2-2xy+y^2)=12xy(x-y)^2$
b.
$x^2-6x+xy-6y=(x^2+xy)-(6x+6y)=x(x+y)-6(x+y)=(x-6)(x+y)$
c.
$2x^2+2xy-x-y=2x(x+y)-(x+y)=(x+y)(2x-1)$
d.
$x^3-3x^2+3x-1=(x-1)^3$
e.
$3x^2-3y^2-12x-12y=(3x^2-3y^2)-(12x+12y)$
$=3(x-y)(x+y)-12(x+y)=(x+y)[3(x-y)-12]=3(x-y)(x-y-4)$
f.
$x^2-2xy-x^2+4y^2=4y^2-2xy=2y(2y-x)$
P - Q + R =(2x2 - 3xy + 4y2) - (3x2 + 4xy -y2) + (x2 +2xy +3y2)
= 2x2 - 3xy + 4y2 - 3x2 - 4xy + y2 + x2 + 2xy + 3y2
=(2x2 - 3x2 + x2) + ( -3xy - 4xy +2xy) + (4y2 + y2 +3y2)
= -5xy + 8y2
Vậy P - Q + R = - 5xy + 8y2
Bài 5:
\(P-Q+R=\) \(\left(2x^2-3xy+4y^2\right)-\left(3x^2+4xy-y^2\right)+\left(x^2+xy+3y^2\right)\)
\(P-Q+R=\) \(2x^2-3xy+4y^2-3x^2-4xy+y^2+x^2+xy+3y^2\)
\(P-Q-R=\) \(\left(2x^2-3x^2+x^2\right)+\left(-3xy-4xy+2xy\right)+\left(4y^2+y^2+2y^2\right)\)
\(P-Q-R=\) \(0-5xy+7y^2\)
Vậy \(P-Q-R=\) \(-5xy+7y^2\)
a) Ta có: \(M+\left(5x^2-2xy\right)=6x^2+9xy-y^2\)
\(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy\)
\(\Leftrightarrow M=x^2+11xy-y^2\)
Vậy: \(M=x^2+11xy-y^2\)
b) Ta có: \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)
\(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2\)
\(\Leftrightarrow N=-x^2+10xy-12y^2\)
Vậy: \(N=-x^2+10xy-12y^2\)
a, (6x2+9xy-y2) - ( 5x2-2xy)=M
=> M= (6x2+9xy-y2) - ( 5x2-2xy)
=> M= 6x2+9xy-y2 - 5x2+2xy
=> M=(6x2- 5x2)+(9xy+2xy)-y2
=>M= 1x2 + 11xy - y2
Vậy M= 1x2 + 11xy - y2
b, N= (3xy-4y2) - (x2-7xy+8y2)
=> N= 3xy-4y2 - x2+7xy-8y2
=> N= (3xy+7xy)-(4y2+8y2)-x2
=> N= 10xy - 12y2 -x2
Vậy N= 10xy - 12y2 -x2
a: Ta có: \(M+5x^2-2xy=6x^2+9xy-y^2\)
\(\Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy\)
\(\Leftrightarrow M=x^2+11xy-y^2\)
b: Ta có: \(\left(3xy-4y^2\right)-N=x^2-7xy+8y^2\)
\(\Leftrightarrow N=3xy-4y^2-x^2+7xy-8y^2\)
\(\Leftrightarrow N=-x^2+10xy-12y^2\)
a) \(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\)
b) \(=2\left(x+y\right)-x\left(x+y\right)=\left(x+y\right)\left(2-x\right)\)
c) \(=3x\left(x-y\right)+5\left(x-y\right)=\left(x-y\right)\left(3x+5\right)\)
d) \(=\left(x+y\right)^2-25=\left(x+y-5\right)\left(x+y+5\right)\)
e) \(=x\left(x^2-11x+30\right)\)
f) \(=x\left(x-3\right)+6\left(x-3\right)=\left(x-3\right)\left(x+6\right)\)
Lời giải:
3x^2 + 3xy - x^3 - M = 3x^2 + 2xy - 4y^2
M=3x^2 + 3xy - x^3 - 3x^2 - 2xy + 4y^2
M= xy-x^3+4y^2