Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M = ( -2x^3 + x^2y + 1 ) + ( 2x^2y - 1 )
= -2x^3 + x^2y + 1 + 2x^2y - 1
= -2x^3 + ( x^2y + 2x^2y ) + ( 1 - 1 )
= -2x^3 + 3x^2y
b) M = ( 3x^2 + 3xy - x^3 ) - ( 3x^2 + 2xy -4y^2 )
= 3x^2 + 3xy - x^3 - 3x^2 - 2xy + 4y^2
= ( 3x^2 - 3x^2 ) + ( 3xy - 2xy ) - x^3 + 4y^2
= xy - x^3 + 4y^2
a, \(M-\left(3xy-4y^2-2xy\right)=\left(x^2-7xy+8y^2\right)\)
\(\Rightarrow M=\left(x^2-7xy+8y^2\right)+\left(3xy-4y^2-2xy\right)\)
\(\Rightarrow M=x^2-7xy+8y^2+3xy-4y^2-2xy\)
\(\Rightarrow M=x^2+\left[3xy-7xy-2xy\right]+\left[8y^2-4y^2\right]\)
\(\Rightarrow M=x^2-6xy+4y^2\)
b, \(N+\left(x^3-xyz+3x^2y\right)=2x^3+3xy-xy^2\)
\(\Rightarrow N=\left(2x^3+3xy-xy^2\right)-\left(x^3-xyz+3x^2y\right)\)
\(\Rightarrow N=2x^3+3xy-xy^2-x^3+xyz-3x^2y\)
\(\Rightarrow N=\left[2x^3-x^3\right]+3xy-xy^2+xyz-3x^2y\)
\(\Rightarrow N=x^3+3xy-xy^2+xyz-3x^2y\)
Tích mình nha!!!
Bài 1 :
A + B = 4x2 - 5xy + 3y2 + 3x2 + 2xy - y2
= ( 4x2 + 3x2 ) - ( 5xy - 2xy ) + ( 3y2 - y2 )
= 7x2 - 3xy + 2y2
A - B = 4x2 - 5xy + 3y2 - ( 3x2 + 2xy - y2 )
= 4x2 - 5xy + 3y2 - 3x2 - 2xy + y2
= ( 4x2 - 3x2 ) - ( 5xy + 2xy ) + ( 3y2 + y2 )
= x2 - 7xy + 4y2
Bài 2 :
a) M + (5x2 - 2xy) = 6x2 + 9xy - y2
M = 6x2 + 9xy - y2 - (5x2 - 2xy)
M = 6x2 + 9xy - y2 - 5x2 + 2xy
M = ( 6x2 - 5x2 ) + ( 9xy + 2xy ) - y2
M = x2 + 11xy - y2
Vậy M = x2 + 11xy - y2
b) (3xy - 4y2) - N = x2 - 7xy + 8y2
N = 3xy - 4y2 - x2 - 7xy + 8y2
N = ( 3xy - 7xy ) - ( 4y2 - 8y2 ) - x2
N = -4xy + 4y2 - x2
Vậy N = -4xy + 4y2 - x2
3, Cho đa thức
A(x)+B(x) = (3x4-\(\dfrac{3}{4}\)x3+2x2-3)+(8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\))
= 3x4-\(\dfrac{3}{4}\)x3+2x2-3+8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\)
= (3x4+8x4)+(-3/4x3+1/5x3)+(-3+2/5)+2x2-9x
= 11x4 -0.55x3-2.6+2x2-9x
A(x)-B(x)=(3x4-\(\dfrac{3}{4}\)x3+2x2-3)-(8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\))
= 3x4-\(\dfrac{3}{4}\)x3+2x2-3-8x4-\(\dfrac{1}{5}\)x3+9x-\(\dfrac{2}{5}\)
= (3x4-8x4)+(-3/4x3-1/5x3)+(-3-2/5)+2x2+9x
= -5x4-0.95x3-3.4+2x2+9x
B(x)-A(x)=(8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\))-(3x4-\(\dfrac{3}{4}\)x3+2x2-3)
=8x4+\(\dfrac{1}{5}\)x3-9x+\(\dfrac{2}{5}\)-3x4+\(\dfrac{3}{4}\)x3-2x2+3
=(8x4-3x4)+(1/5x3+3/4x3)+(2/5+3)-9x-2x2
= 5x4+0.95x3+2.6-9x-2x2
A=\(5x^2-3x^2+2xy-2^2+y^5\)
=(\(5x^2-3x^2\))\(+2xy-4+y^5\)
B=\(4x^2-xy+y^2+3xy+x^2-2x^2y\)
=\(\left(4x^2+x^2\right)\)+\(\left(-xy+3xy\right)\)\(+y^2-2x^2y\)
=\(5x^2+2xy\)\(+y^2-2x^2y\)
Cho P= 2x2 - 3xy + 4y2 ; Q= 3x2 + 4xy - y2 ; R = x2 + 2xy + 3y2
Tính P - Q + R
Các cậu giúp mình với
\(\left\{{}\begin{matrix}P\left(x,y\right)=2x^2-3xy+4y^2\\Q\left(x,y\right)=3x^2+4xy-y^2\\R\left(x,y\right)=x^2+2xy+3y^2\\f\left(x,y\right)=P-Q+R\end{matrix}\right.\)
\(f\left(x,y\right)=\left(2-3+1\right)x^2+\left(-3-4+2\right)xy+\left(4-\left(-1\right)+3\right)y^2\)
\(f\left(x,y\right)=0x^2-5xy+8y^2=8y^2-5xy\)
a, (3x2-2xy+y2) + (x2-xy+2y2) - (4x2-y2)
= 3x2-2xy+y2+x2-xy+2y2-4x2+y2
= 4y2-3xy
b, = x2-y2+2xy-x2-xy-2y2+4xy-1
= -3y2+5xy
c, M=5xy+x2-7y2+(2xy-4y)2 = 5xy+x2-7y2+4x2y2-16xy2+16y2 = 5xy+x2+9y2+4x2y2-16xy2
C= x2 y - \(\dfrac{1}{2}\)xy2 + \(\dfrac{1}{3}\)x2y +\(\dfrac{2}{3}\)xy2 + 1
C=(x2y + \(\dfrac{1}{3}\)x2y )+( - \(\dfrac{1}{2}\)xy2 +\(\dfrac{2}{3}\)xy2)+ 1
C=\(\dfrac{4}{3}\)x2y +\(\dfrac{1}{6}\)xy2+1
=>Bặc: 3
D= xy2z + 3xyz2 - \(\dfrac{1}{5}\)xy2z - \(\dfrac{1}{3}\)xyz2 - 2
D=(xy2z - \(\dfrac{1}{5}\)xy2z )+( 3xyz2 - \(\dfrac{1}{3}\)xyz2) - 2
D=\(\dfrac{4}{5}\)xy2z +\(\dfrac{8}{3}\)xyz2 - 2
=> Bậc :4
E = 3xy5 - x2y + 7xy - 3xy5 + 3x2y - \(\dfrac{1}{2}\)xy + 1
E=(3xy5- 3xy5) + (- x2y + 3x2y) + (7xy - \(\dfrac{1}{2}\)xy)+ 1
E= 2x2y + \(\dfrac{13}{2}\)xy + 1
=> Bậc: 3
K = 5x3 - 4x + 7x2 - 6x3 + 4x + 1
K= (5x3 - 6x3 ) + (- 4x + 4x) +1
K= -1x3 + 1
=>Bậc: 3
F = 12x3y2 - \(\dfrac{3}{7}\)x4y2 + 2xy3 - x3y2 + x4y2 - xy3 - 5
F=( 12x3y2 - x3y2) + (- \(\dfrac{3}{7}\)x4y2 + x4y2) + (2xy3 - xy3) -5
F=11x3y2 + \(\dfrac{4}{7}\)x4y2 + xy3 - 5
=> Bậc :6
CHÚC BN HỌC TỐT ^-^
Lời giải:
3x^2 + 3xy - x^3 - M = 3x^2 + 2xy - 4y^2
M=3x^2 + 3xy - x^3 - 3x^2 - 2xy + 4y^2
M= xy-x^3+4y^2