tim gia tri lon nhat
\(A=\left|x+2\right|+\left|x-1\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:|a|+|b|>=|a+b|
<=>(|a|+|b|)2>=|a+b|2
<=>a2+2|ab|+b2>=(a+b)2=a2+2ab+b2
<=>2|ab|>=2ab
<=>|ab|>=ab(luôn đúng với mọi a,b>=0)
áp dụng bất đẳng thức |a|+|b|>=|a+b| với mọi a;b>=0
dấu "=" xảy ra khi và chỉ khi ab>=0
=>A=|x+2|+|1-x|>=|x+2+1-x|=|3|=3
dấu "=" xảy ra khi và chỉ khi (x+2)(1-x)>=0
<=>x+2>=0 và 1-x >=0
hoặc x+2<=0 và 1-x<=0
<=>x>=-2 và x<=1 <=>-2<=x<=1
hoặc x<=-2 và x>=1 (vô lí)
vậy GTLN của A =3 khi vsf chỉ khi -2<=x<=1
a)
\(\left\{{}\begin{matrix}\left(4x-1\right)^4\ge0\\\left|2x-3y\right|\ge0\end{matrix}\right.\) \(\Rightarrow A\ge25,6\) tự tìm cận
không có Max
b) giống vậy
c) \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\\\left|4x-3y\right|\ge0\Rightarrow-\left|4x-3y\right|\le0\end{matrix}\right.\)
\(C\le40,5\) tự tìm cận
không có GTNN
\(A=5-\left|2x-1\right|\le5\)
Dấu "=" xảy ra khi:
\(2x=1\Leftrightarrow x=\dfrac{1}{2}\)
\(B=\dfrac{1}{\left|x-1\right|+3}\le\dfrac{1}{3}\)
Dấu "=" xảy ra khi:
\(x=1\)
\(C=x+\dfrac{1}{2}-\left|x-\dfrac{2}{3}\right|\le\left|x+\dfrac{1}{2}-x-\dfrac{2}{3}\right|=\dfrac{1}{6}\)
Dấu "=" xảy ra khi: \(-\dfrac{1}{2}\le x\le\dfrac{2}{3}\)
Ta có: \(\left|2x-1\right|\le0\) với mọi x
\(\Rightarrow5-\left|2x-1\right|\le5-0\) với mọi x
\(\Leftrightarrow A\le5\)
\(\Rightarrow A_{max}=5\)
Dấu \("="\) xảy ra khi:
\(\left|2x-1\right|=0\\ 2x-1=0\\ 2x=1\\ x=1:2=0,5\)
Vậy A đạt giá trị lớn nhất khi \(x=0,5\)
\(ĐKXĐ:0\le x\ne x\)
a) \(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)
\(P=\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right].\frac{\left(1-x\right)^2}{2}\)
\(P=\frac{x-\sqrt{x}-2-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(P=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)
\(P=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b) \(P=-x+\sqrt{x}=-\left(x-2\sqrt{x}.\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\sqrt{x}.\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(\Rightarrow MAX_P=\frac{1}{4}\text{ khi }x=\frac{1}{4}\)
\(C=5x^2+20x+2010\)
\(=5\left(x^2+4x+402\right)\)
\(=5\left(x^2+2.x.2+2^2+398\right)\)
\(=5\left[\left(x+2\right)^2+398\right]\)
VÌ \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+398\ge398\forall x\)
\(\Rightarrow C=5\left[\left(x+2\right)^2+398\right]\ge1990\forall x\)
Dấu "=" xảy ra <=> x = - 2
Vậy gtnn của C là 1990 tại x = - 2
1) Giá trị nhỏ nhất của A = 0
2) Giá trị nhỏ nhất của B = 2011
3) Gí trị nhỏ nhất của C = 2010
nếu bạn cần cách giải chi tiết thì nhắn tin gửi cho mk; mk sẽ giải cho