K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2019

\(|x+3|+|2-x|\ge|x+3+2-x|=5\Rightarrow B_{min}=5\)

12 tháng 7 2019

\(B=\left|x+3\right|+\left|2-x\right|\ge\left|x+3+2-x\right|=\left|5\right|=5\)

Dấu "=" xảy ra khi \(x=0\)

Vậy \(B_{min}=5\Leftrightarrow x=0\)

a: \(A=\left|x+1\right|+5\ge5\forall x\)

Dấu '=' xảy ra khi x=-1

b: \(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\le\dfrac{12}{3}+1=4+1=5\)

Dấu '=' xảy ra khi x=0

28 tháng 10 2023

minh tag dung cho

 

28 tháng 10 2023

BĐT: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Rightarrow m=\left|x-1\right|+\left|x-5\right|\)

\(=\left|x-1\right|+\left|-\left(x-5\right)\right|\)

\(=\left|x-1\right|+\left|5-x\right|\)

Theo BĐT ta có: \(m=\left|x-1\right|+\left|5-x\right|\ge\left|x-1+5-x\right|=4\)

Vậy: \(m_{min}=4\)