Tìm x, biết:
\(\left(x-\frac{1}{2}\right).\left(x+\frac{1}{2}\right)\ge0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Nếu \(x>\frac{1}{3}\)
=> \(\frac{1}{3}-x<0\Rightarrow\left(x+\frac{1}{2}\right)\left(\frac{1}{3}-x\right)<0\)(loại)
* Nếu \(x=\frac{1}{3}\)
=> \(\frac{1}{3}-\frac{1}{3}=0\Rightarrow\left(x+\frac{1}{2}\right)\left(\frac{1}{3}-x\right)=0\)(chọn)
* Nếu \(x<\frac{1}{3}\)
=> \(\frac{1}{3}-x>0\Rightarrow\left(x+\frac{1}{2}\right)\left(\frac{1}{3}-x\right)>0\)(chọn)
Vậy để \(\left(x+\frac{1}{2}\right)\left(\frac{1}{3}-x\right)\ge0\) thì \(x\le\frac{1}{3}\).
a) Ta có: \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)
\(=\left(\frac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\cdot\left(\frac{1}{1+\sqrt{x}}\right)^2\)
\(=\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{-\left(x-1\right)\left(-1-\sqrt{x}\right)}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{\left(1+\sqrt{x}\right)\cdot\left(-1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)^2}\)
\(=\frac{-1\cdot\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=-1\)
:V
Câu đầu cho x > 0 thì dễ hơn ......
Sử dụng BĐT AM - GM ta dễ có:\(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\ge2\sqrt{\left(\sqrt{x}+2\right)\cdot\frac{9}{\sqrt{x}+2}}-2=4\)
Đẳng thức xảy ra tại x=1
\(E=\frac{x+1}{\sqrt{x}}\ge\frac{2\sqrt{x}}{\sqrt{x}}=2\) Đẳng thức xảy ra tại x=1
Làm 2 cái thôi còn lại tương tự bạn nhé :)
+ Ta có: \(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}\)
\(D=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\)
Áp dụng bất đẳng thức Cô-si cho phương trình \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\) ta có:
\(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge\sqrt{\left(\sqrt{x}+2\right).\left(\frac{9}{\sqrt{x}+2}\right)}=\sqrt{9}=3\)
\(\Rightarrow\)\(D\ge3-2=1\)
Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x+2}=\frac{9}{\sqrt{x}+2}\)
\(\Leftrightarrow\left(\sqrt{x}+2\right)^2=9\)
\(\Leftrightarrow\sqrt{x}+2=\pm3\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+2=-3\\\sqrt{x}+2=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-5\left(L\right)\\\sqrt{x}=1\end{cases}}\)
\(\Leftrightarrow x=\pm1\)
Vậy \(S=\left\{\pm1\right\}\)
\(\frac{1}{\left(x-1\right)x}+\frac{1}{\left(x-2\right)\left(x-1\right)}+\frac{1}{\left(x-3\right)\left(x-2\right)}+\frac{1}{\left(x-4\right)\left(x-3\right)}=\frac{x}{x^2-4x}\)
\(\Leftrightarrow\)\(\frac{1}{x-1}-\frac{1}{x}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-4}-\frac{1}{x-3}=\frac{x}{x\left(x-4\right)}\)
\(\Leftrightarrow\)\(-\frac{1}{x}+\frac{1}{x-4}=\frac{1}{x-4}\)
\(\Leftrightarrow\)\(\frac{-\left(x-4\right)+x}{x\left(x-4\right)}=\frac{x}{x\left(x-4\right)}\)
\(\Leftrightarrow\)\(4-x+x=x\)
\(\Leftrightarrow x=4\)
lo nói mk làm cách lâu chứ m cx hỏi người khác!!!!!!!!!!!
Đặt \(t=\left(x+\frac{1}{x}\right)^2\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=t-2\)điều kiện t>=0,x # 0
Phương trình trở thành
8t +4(t-2)2 - 4(t-2)2t =(x+4)2
8t + 4t2 - 16t + 16 -4t3 + 16t2 - 16t=(x+4)2
-4t3 + 20t2 -24t=x2 +8x
-4t(t2 -5t +6)=x(x+8)
-4t(t-2)(t-3)=x(x+8)
Mình chỉ giúp dược tới đó
=> \(x-\frac{1}{2}\ge0\Rightarrow x\ge\frac{1}{2}\left(1\right)\)
hoặc \(x+\frac{1}{2}\ge0\Rightarrow x\ge-\frac{1}{2}\left(2\right)\)
Từ (1) và (2) => \(x\ge\frac{1}{2}\)