Cho d1:y=(2m-1)x+m-1
d2:y=x-3
Tìm m để giao d1;d2 thuộc góc phần tư thứ 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm của \(\left(d1\right),\left(d2\right)\) là:
\(2x-3=-x+9\)
\(\Leftrightarrow3x=12\)
hay x=4
Thay x=4 vào \(\left(d2\right)\), ta được:
\(y=-4+9=5\)
Thay x=4 và y=5 vào \(\left(d3\right)\), ta được:
\(4\left(m-1\right)+m-3=5\)
\(\Leftrightarrow4m-4+m-3=5\)
\(\Leftrightarrow5m=12\)
hay \(m=\dfrac{12}{5}\)
(a) \(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2-m^2=-2\\-m-5\ne2m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne-3\end{matrix}\right.\)
\(\Rightarrow m=\pm2.\)
(b) Viết lại phương trình đường thẳng \(\left(d_2\right)\) thành \(\left(d_2\right):y=\left(m-1\right)x+m\).
\(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2m+1=m-1\\-\left(2m+3\right)\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m\ne-1\end{matrix}\right.\)
\(\Rightarrow m=-2.\)
(c) Phương trình hoành độ giao điểm của \(\left(d_1\right),\left(d_2\right):\)
\(m^2x+1-4m=-\dfrac{1}{4}x+1\)
\(\Leftrightarrow\left(m^2+\dfrac{1}{4}\right)x=4m\Leftrightarrow x=\dfrac{4m}{m^2+\dfrac{1}{4}}=\dfrac{16m}{4m^2+1}\).
Thay vào \(\left(d_2\right)\Rightarrow y=-\dfrac{1}{4}\cdot\dfrac{16m}{4m^2+1}+1=-\dfrac{4m}{4m^2+1}+1\).
Do hai đường thẳng cắt nhau tại một điểm nằm trên trục hoành \(\Rightarrow y=-\dfrac{4m}{4m^2+1}+1=0\)
\(\Leftrightarrow m=\dfrac{1}{2}\).
1: Để hai đường thẳng cắt nhau thì
2m+1<>m+2
hay m<>1
Bài 1:
b: Để (d) vuông góc với (d2) thì \(\left(m^2+2m\right)\cdot\dfrac{-1}{3}=-1\)
\(\Leftrightarrow m^2+2m-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)
a, d1//d2 <=> 2m-1= m+1 <=> 2m-m = 1+1 <=> m=2
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=m+1\\-2m+5< >m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m-m=1+1\\-2m-m< >-1-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=2\\-3m\ne-6\end{matrix}\right.\)
=>\(m\in\varnothing\)
b: Để (d1) cắt (d2) thì \(2m-1\ne m+1\)
=>\(2m-m\ne1+1\)
=>\(m\ne2\)
a: Để (d)//d1 thì \(\left\{{}\begin{matrix}m^2+m-6=0\\m+1\ne-2\end{matrix}\right.\Leftrightarrow m=2\)
a, để d1 cat d2 <=> \(2+m\ne1+2m\)
\(\Leftrightarrow m\ne1\)
b, d1: y= x + 1
d2: y= -x + 2
pt hoanh do giao diem cua d1 va d2:
x+1 = -x +2 <=> x = 1/2
=> y = 1/2 +1 = 1,5
toa đô giao diem A(1/2 ; 1,5)
hìh tụ vẽ
a,\(\left(d_1\right)\cap\left(d_2\right)\Rightarrow a\ne a'\)
=> \(2+m\ne1+2m\)\(\Leftrightarrow m\ne1\)
b, thay m=-1 vào ta được
\(\left(d_1\right):y=1x+1\)
\(\left(d_2\right):y=-x+2\)
Hoành độ giao điểm của 2 đường thẳng là nghiệm của pt:
x+1=-x+2
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\)thay vào \(\left(d_1\right)\) ta có: y=\(\dfrac{1}{2}+1=\dfrac{3}{2}\)
Vậy tọa độ giao điểm của 2 đường thẳng là A\(\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)
Phương trình hoành độ giao điểm:
`(2m-1)x+m-1=x-3`
`<=>(2m-2)x+m+2=0`
`<=>x=-(m+2)/(2m-2)`
`d_1` giao `d_2` tại góc phần tư thứ 1 `<=> x=-(m+2)/(2m-2)>0 <=>-2<m<1`
Vậy `-2<m<1`.