K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2021

Phương trình hoành độ giao điểm:

`(2m-1)x+m-1=x-3`

`<=>(2m-2)x+m+2=0`

`<=>x=-(m+2)/(2m-2)`

`d_1` giao `d_2` tại góc phần tư thứ 1 `<=> x=-(m+2)/(2m-2)>0 <=>-2<m<1`

Vậy `-2<m<1`.

Phương trình hoành độ giao điểm của \(\left(d1\right),\left(d2\right)\) là:

\(2x-3=-x+9\)

\(\Leftrightarrow3x=12\)

hay x=4

Thay x=4 vào \(\left(d2\right)\), ta được:

\(y=-4+9=5\)

Thay x=4 và y=5 vào \(\left(d3\right)\), ta được:

\(4\left(m-1\right)+m-3=5\)

\(\Leftrightarrow4m-4+m-3=5\)

\(\Leftrightarrow5m=12\)

hay \(m=\dfrac{12}{5}\)

16 tháng 10 2023

(a) \(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2-m^2=-2\\-m-5\ne2m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\pm2\\m\ne-3\end{matrix}\right.\)

\(\Rightarrow m=\pm2.\)

(b) Viết lại phương trình đường thẳng \(\left(d_2\right)\) thành \(\left(d_2\right):y=\left(m-1\right)x+m\).

\(\left(d_1\right)\left|\right|\left(d_2\right)\Leftrightarrow\left\{{}\begin{matrix}2m+1=m-1\\-\left(2m+3\right)\ne m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-2\\m\ne-1\end{matrix}\right.\)

\(\Rightarrow m=-2.\)

(c) Phương trình hoành độ giao điểm của \(\left(d_1\right),\left(d_2\right):\)

\(m^2x+1-4m=-\dfrac{1}{4}x+1\)

\(\Leftrightarrow\left(m^2+\dfrac{1}{4}\right)x=4m\Leftrightarrow x=\dfrac{4m}{m^2+\dfrac{1}{4}}=\dfrac{16m}{4m^2+1}\).

Thay vào \(\left(d_2\right)\Rightarrow y=-\dfrac{1}{4}\cdot\dfrac{16m}{4m^2+1}+1=-\dfrac{4m}{4m^2+1}+1\).

Do hai đường thẳng cắt nhau tại một điểm nằm trên trục hoành \(\Rightarrow y=-\dfrac{4m}{4m^2+1}+1=0\)

\(\Leftrightarrow m=\dfrac{1}{2}\).

11 tháng 12 2021

1: Để hai đường thẳng cắt nhau thì 

2m+1<>m+2

hay m<>1

4 tháng 11 2021

mọi người giải giúp e với ạ :3

 

Bài 1:

b: Để (d) vuông góc với (d2) thì \(\left(m^2+2m\right)\cdot\dfrac{-1}{3}=-1\)

\(\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=1\end{matrix}\right.\)

4 tháng 12 2023

a, d1//d2 <=> 2m-1= m+1 <=> 2m-m = 1+1 <=> m=2

 

a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}2m-1=m+1\\-2m+5< >m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m-m=1+1\\-2m-m< >-1-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=2\\-3m\ne-6\end{matrix}\right.\)

=>\(m\in\varnothing\)

b: Để (d1) cắt (d2) thì \(2m-1\ne m+1\)

=>\(2m-m\ne1+1\)

=>\(m\ne2\)

4 tháng 11 2021

mọi người giúp mình với ạ :3

a: Để (d)//d1 thì \(\left\{{}\begin{matrix}m^2+m-6=0\\m+1\ne-2\end{matrix}\right.\Leftrightarrow m=2\)

21 tháng 12 2017

a, để d1 cat d2 <=> \(2+m\ne1+2m\)

\(\Leftrightarrow m\ne1\)

b, d1: y= x + 1

d2: y= -x + 2

pt hoanh do giao diem cua d1 va d2:

x+1 = -x +2 <=> x = 1/2

=> y = 1/2 +1 = 1,5

toa đô giao diem A(1/2 ; 1,5)

hìh tụ vẽ

28 tháng 12 2018

a,\(\left(d_1\right)\cap\left(d_2\right)\Rightarrow a\ne a'\)
=> \(2+m\ne1+2m\)\(\Leftrightarrow m\ne1\)
b, thay m=-1 vào ta được
\(\left(d_1\right):y=1x+1\)
\(\left(d_2\right):y=-x+2\)
Hoành độ giao điểm của 2 đường thẳng là nghiệm của pt:
x+1=-x+2
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\)thay vào \(\left(d_1\right)\) ta có: y=\(\dfrac{1}{2}+1=\dfrac{3}{2}\)
Vậy tọa độ giao điểm của 2 đường thẳng là A\(\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)

27 tháng 11 2015

a, m=2

b, d1 không có y

c, m=1