(a+b+c)2=3(ab+ac+bc)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (a-b)²≥0 nên a²+b²≥2ab, tương tự b²+c²≥2bc, c²+a²≥2ca, cộng vế với vế rồi chia 2 2 vế ta có a²+b²+c²≥ab+bc+ca
a, b, c là 3 cạnh tam giác nên a+b>c → c(a+b)>c², tương tự b(a+c)>b², a(b+c)>a², cộng vế với vế ta có 2(ab+bc+ca)>a²+b²+c²
Áp dụng BĐT Cauchy cho 3 số không âm a^2 + b^2 + c^2 là ra nha bạn
Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ac}{a+c}.\)
\(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{a+c}{ac}\)
\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)
\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}.\)
\(\Rightarrow a=b=c\)
Khi đó: \(P=\frac{ab^2+bc^2+ac^2}{a^3+b^3+c^3}=1.\)
Vậy \(P=1.\)
Chúc bạn học tốt!
Bạn ơi cho mình hỏi
Làm sao để ghi phân số và dấu => ở đây vậy
Câu a bạn chứng minh được rồi là xong nha !!!!!!!
Câu b)
\(B=\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\)
\(B=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)
Ta lần lượt áp dụng BĐT Cauchy 2 số và sử dụng câu a sẽ được:
=> \(B\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{8.3\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}\)
=> \(B\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
DẤU "=" Xảy ra <=> \(a=b=c\)
Vậy ta có ĐPCM !!!!!!!!
3. Cho tam giác ABC vuông tại A. Theo định lí Pitago ta có:
A. AC mũ 2= AB mũ 2 + BC mũ 2 B. AB mũ 2= AC mũ 2 + BC mũ 2
C. BC mũ 2 = AB mũ 2 + AC mũ 2 D. BC mũ 2 = AB mũ 2 - AC mũ 2
Chúc bạn học tốt!
( a + b + c )2 = 3( ab + bc + ac )
<=> a2 + b2 + c2 + 2ab + 2bc + 2ac - 3ab - 3bc - 3ac = 0
<=> a2 + b2 + c2 - ab - bc - ac = 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0
<=> a = b = c