Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a bạn chứng minh được rồi là xong nha !!!!!!!
Câu b)
\(B=\frac{\left(a+b+c\right)^2}{ab+bc+ca}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}\)
\(B=\frac{\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}+\frac{ab+bc+ca}{\left(a+b+c\right)^2}+\frac{8\left(a+b+c\right)^2}{9\left(ab+bc+ca\right)}\)
Ta lần lượt áp dụng BĐT Cauchy 2 số và sử dụng câu a sẽ được:
=> \(B\ge2\sqrt{\frac{\left(a+b+c\right)^2\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)\left(a+b+c\right)^2}}+\frac{8.3\left(ab+bc+ca\right)}{9\left(ab+bc+ca\right)}\)
=> \(B\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
DẤU "=" Xảy ra <=> \(a=b=c\)
Vậy ta có ĐPCM !!!!!!!!
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=a^3+b^3+c^3-3abc=c^3-3cba+b^3+a^3\)
\(=a^3+b^3+c^3-3abc-\left(b^3+c^3\right)=c^3-3cba+b^3+a^3-\left(b^3+c^3\right)\)
\(=a^3-3abc-\left(-3abc+a^3\right)=-3cba+a^3-\left(-3cab+a^3\right)\)
=> ĐPCM
a) \(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+ab\right)\)
\(=ab^2+ac^2+abc+bc^2+ba^2+abc+ca^2+cb^2+abc\)
\(=\left(ab^2+abc+ba^2\right)+\left(ac^2+ca^2+abc\right)+\left(bc^2+abc+cb^2\right)\)
\(=ab\left(b+c+a\right)+ac\left(c+a+b\right)+bc\left(c+a+b\right)\)
\(=\left(a+b+c\right)\left(ab+ac+bc\right)\)
b) \(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=ab^2+ac^2+abc+bc^2+ba^2+abc+ca^2+cb^2+abc-abc\)
\(=\left(ab^2+ba^2\right)+\left(ac^2+bc^2\right)+\left(abc+cb^2\right)+\left(abc+ca^2\right)\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+cb\left(a+b\right)+ca\left(b+a\right)\)
\(=\left(a+b\right)\left(ab+c^2+bc+ac\right)\)
\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(c+b\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
c) \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a\left(a^3+3a^2.2b+3a4b^2+8b^3\right)-b\left(8a^3+3.4a^2.b+3.2a.b^2+b^3\right)\)
\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)+6ab\left(a^2-b^2\right)-8ab\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2+6ab-8ab\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2-2ab\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a-b\right)^2\)
\(=\left(a-b\right)^3\left(a+b\right)\)
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Leftrightarrow a=b=c=1\)
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ac\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
( a + b + c )2 = 3( ab + bc + ac )
<=> a2 + b2 + c2 + 2ab + 2bc + 2ac - 3ab - 3bc - 3ac = 0
<=> a2 + b2 + c2 - ab - bc - ac = 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0
<=> a = b = c