K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

\(\left(3x-5\right)^2-\left(3x+1\right)^2=8\)   

\(\left(9x^2-30x+25\right)-\left(9x^2+6x+1\right)=8\)   

\(-36x+24=8\)   

\(-36x=-16\)   

\(x=\frac{4}{9}\)

21 tháng 7 2021

\(\left(3x-5\right)^2-\left(3x+1\right)^2=8\)

\(\Leftrightarrow9x^2-30x+25-9x^2-6x-1=8\)

\(\Leftrightarrow-36x=-16\)

\(\Leftrightarrow x=\frac{4}{9}\)

#H

10 tháng 10 2021

Chọn B

1: \(\dfrac{x^3-11x^2+27x-9}{x-3}\)

\(=\dfrac{x^3-3x^2-8x^2+24x+3x-9}{x-3}\)

\(=x^2-8x+3\)

2: \(\dfrac{-3x^3+5x^2-9x+15}{-3x+5}\)

\(=\dfrac{3x^3-5x^2+9x-15}{3x-5}\)

\(=x^2+3\)

20 tháng 10 2021

\(A⋮B\Leftrightarrow ax^3+bx^2-3x-2=\left(x-1\right)\left(x-2\right)\cdot c\left(x\right)\)

Thay \(x=1\Leftrightarrow a+b-3-2=0\Leftrightarrow a+b=5\left(1\right)\)

Thay \(x=2\Leftrightarrow8a+4b-6-2=0\Leftrightarrow8a+4b=8\Leftrightarrow2a+b=4\left(2\right)\)

\(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}a=-1\\a=6\end{matrix}\right.\)

5 tháng 10 2021

a) \(\Rightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\)

\(\Rightarrow x^3-9x=0\)

\(\Rightarrow x\left(x-3\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b) \(\Rightarrow x^3-1=x^3-9x^2+2x^2+6\)

\(\Rightarrow7x^2=7\)

\(\Rightarrow x^2=1\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

a: Ta có: \(A=-x^2+2x+5\)

\(=-\left(x^2-2x-5\right)\)

\(=-\left(x^2-2x+1-6\right)\)

\(=-\left(x-1\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi x=1

b: Ta có: \(B=-x^2-8x+10\)

\(=-\left(x^2+8x-10\right)\)

\(=-\left(x^2+8x+16-26\right)\)

\(=-\left(x+4\right)^2+26\le26\forall x\)

Dấu '=' xảy ra khi x=-4

c: Ta có: \(C=-3x^2+12x+8\)

\(=-3\left(x^2-4x-\dfrac{8}{3}\right)\)

\(=-3\left(x^2-4x+4-\dfrac{20}{3}\right)\)

\(=-3\left(x-2\right)^2+20\le20\forall x\)

Dấu '=' xảy ra khi x=2

d: Ta có: \(D=-5x^2+9x-3\)

\(=-5\left(x^2-\dfrac{9}{5}x+\dfrac{3}{5}\right)\)

\(=-5\left(x^2-2\cdot x\cdot\dfrac{9}{10}+\dfrac{81}{100}-\dfrac{21}{100}\right)\)

\(=-5\left(x-\dfrac{9}{10}\right)^2+\dfrac{21}{20}\le\dfrac{21}{20}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{9}{10}\)

e: Ta có: \(E=\left(4-x\right)\left(x+6\right)\)

\(=4x+24-x^2-6x\)

\(=-x^2-2x+24\)

\(=-\left(x^2+2x-24\right)\)

\(=-\left(x^2+2x+1-25\right)\)

\(=-\left(x+1\right)^2+25\le25\forall x\)

Dấu '=' xảy ra khi x=-1

f: Ta có: \(F=\left(2x+5\right)\left(4-3x\right)\)

\(=8x-6x^2+20-15x\)

\(=-6x^2-7x+20\)

\(=-6\left(x^2+\dfrac{7}{6}x-\dfrac{10}{3}\right)\)

\(=-6\left(x^2+2\cdot x\cdot\dfrac{7}{12}+\dfrac{49}{144}-\dfrac{529}{144}\right)\)

\(=-6\left(x+\dfrac{7}{12}\right)^2+\dfrac{529}{24}\le\dfrac{529}{24}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{7}{12}\)

15 tháng 4 2020

cho mình sửa lại câu d nhé

⇔(x+1)2=\(\frac{4}{3}\)

\(\left[{}\begin{matrix}x+1=\sqrt{\frac{4}{3}}\\x+1=-\sqrt{\frac{4}{3}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\frac{4}{3}}-1\\x=-\sqrt{\frac{4}{3}}-1\end{matrix}\right.\)

15 tháng 4 2020

a, 2x - x - 3 + 4 = -x - 3

\(\Leftrightarrow\) x + 1 = -x - 3

\(\Leftrightarrow\) x + x = -3 - 1

\(\Leftrightarrow\) 2x = -4

\(\Leftrightarrow\) x = -2

Vậy S = {-2}

b, 3x - 22x + 5 = 6x + 14x - 3

\(\Leftrightarrow\) -19x + 5 = 20x - 3

\(\Leftrightarrow\) -19x - 20x = -3 - 5

\(\Leftrightarrow\) -39x = -8

\(\Leftrightarrow\) x = \(\frac{8}{39}\)

Vậy S = {\(\frac{8}{39}\)}

c, x + 3x + 1 + x - 2x = 2

\(\Leftrightarrow\) 3x + 1 = 2

\(\Leftrightarrow\) 3x = 2 - 1

\(\Leftrightarrow\) 3x = 1

\(\Leftrightarrow\) x = \(\frac{1}{3}\)

Vậy S = {\(\frac{1}{3}\)}

Phần d mình ko hiểu, bạn viết rõ được ko!

Chúc bn học tốt!!

15 tháng 4 2020

Nguyễn Thị Anh Thư cái này bạn gửi một lần r mà!

a) Ta có: \(x^2-8x+7=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)

b) Ta có: \(x^2+x-20=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)

c) Ta có: \(3x^2+4x-4=0\)

\(\Leftrightarrow3x^2+6x-2x-4=0\)

\(\Leftrightarrow3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{2}{3}\end{matrix}\right.\)

d) Ta có: \(3x^2-4x-7=0\)

\(\Leftrightarrow3x^2-7x+3x-7=0\)

\(\Leftrightarrow\left(3x-7\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=-1\end{matrix}\right.\)

e) Ta có: \(5x^2-16x+3=0\)

\(\Leftrightarrow5x^2-15x-x+3=0\)

\(\Leftrightarrow\left(x-3\right)\left(5x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

f) Ta có: \(x^2+3x-10=0\)

\(\Leftrightarrow x^2+5x-2x-10=0\)

\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)

4 tháng 7 2021

a)

\(x^2-8x+7=0\text{⇔}\text{⇔}x^2-7x-x-7=\left(x-7\right)\left(x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=1\\x=7\end{matrix}\right.\)

Vậy nghiệm của đa thức : \(S=\left\{1;7\right\}\)

c)

\(3x^2+4x-4=0\text{⇔}3x^2+6x-2x-4=\left(3x-2\right)\left(x+2\right)=0\text{⇔}\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

Vậy nghiệm của đa thức : \(S=\left\{\dfrac{2}{3};-2\right\}\)

b)

\(x^2+x-20=0⇔\left(x-4\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)

d)

\(3x^2-4x-7=0\text{⇔}\left(3x-7\right)\left(x+1\right)=0\text{⇔}\left[{}\begin{matrix}x=-1\\x=\dfrac{7}{3}\end{matrix}\right.\)

e)

\(5x^2-16x+3\text{⇔}\left(x-3\right)\left(5x-1\right)=0\text{⇔}\left[{}\begin{matrix}x=3\\x=\dfrac{1}{5}\end{matrix}\right.\)

f)

\(x^2+3x-10=0\text{⇔}\left(x-2\right)\left(x+5\right)=0\text{⇔}\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

\(\)

23 tháng 10 2021

\(=9x^2-6x-x^2+2x-1=8x^2-4x-1\)

23 tháng 10 2021

3𝑥(3𝑥 − 2) − (𝑥 − 1)^2

=9x2−6x−x2+2x−1

=8x2−4x−1