cho p là số nguyên tố >2 và S=1k+2k+3k+....+pk(k thuộc Z+);S chia hết cho p
chứng minh k chia hết cho p-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số nguyên tố là prime number mà bạn chứ sao lại là số element?
Gọi UCLN(3k+2,5k+3) là d (d thuộc N*)
3k+2 chia hết cho d => 15k+10 chia hết cho d
5k+3 chia hết cho d => 15k+9 chia hết cho d
=> 15k+10-15k-9 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N*
=> d=1
=> 3k+2 và 5k+3 nguyên tố cùng nhau
Gọi ƯC(2k+1,9k+4)=d
Ta có: 2k+1 chia hết cho d=>9.(2k+1)=18k+9 chia hết cho d
9k+4 chia hết cho d=>2.(9k+4)=18k+8 chia hết cho d
=>18k+9-(18k+8) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯC(2k+1,9k+4)=1
=>2k+1 và 9k+4 là 2 số nguyên tố cùng nhau
p+2;p+4;hợp số
p+2;p+4;số nguyên tố
3k+3;chia hết; 3; hợp số
3k+6; chia hết ;3; hợp số
nếu p=2 thì p+2=4 và p+4=6
mà 6 và 4 ko là số nguyên tố
suy ra p ko bằng 2
nếu p=3 thì p+2=5 và p+4=7
mà 5 va 7 là các số nguyên tố
suy ra p=3
nếu p>3 thì p=3k+1 hoặc p=3k+2 (k thuộc STN khác 0)
ta có
(*) p=3k+1 thì p+2=3k+1+2=3k+3
mà 3k+3 \(⋮\)3
suy ra p ko bằng 3k+1
(*)p=3k+2 thì p+4=3k++4=3k+6
mà 3k+6 \(⋮\)3
suy ra p ko bằng 3k+2
vậy p=3
Goi b la so nghuyen to lon hon 3 chia cho 3 xay ra 3 truong hop truong hop 1:b chia het cho 3 suy ra b khong phai la so nghuyen to (khong duoc) truong hop 2 :b chia cho 3 du 1 (duoc truong hop 3:b cia cho 3 du 2 (duoc)
b) vì p là số nguyên tố>3(gt)
=>p có dạng 3k+1 howacj 3k+2
Nếu p=3k+2
=> p+4=3k+6 ⋮ 3
mà p+4 là số nguyên tố>3(do p>3)
=>p+4=3k+6 không thỏa mãn p+4 là số nguyên tố
Nếu p=3k+1
=> p+4=3k+5 (hợp lí)
vậy p+8 là hợp số
=>p+8=3k+9 ⋮ 3
=>p+8 là hợp số
c)vì p là số nguyên tố>3(gt)
=>p lẻ =>(p-1)(p+1) là tích 2 số chẵn liên tiếp
g/s với kϵN ta có 2k(2k+2)là tích 2 chẵn liên tiếp
2k(2k+2)=4k(k+1)
với kϵN ta có k(k+1)là tích 2 số tự nhiên liên tiếp
=> k(k+1)⋮2
=>4k(k+1)⋮8
=>tích 2 số tự nhiên liên tiếp luôn chia hết cho 8
=>(p-1)(p+1) ⋮ 8 (1)
ta có p-1; p; p+1 là 3 số tự nhiên liên tiếp
=>(p-1)p(p+1)⋮3
mà p là số nguyên tố>3(gt) => p không chia hết cho 3
=> (p-1)(p+1) ⋮ 3 (2)
từ (1),(2) kết hợp với 3; 8 là 2 số nguyên tố cùng nhau
=> (p-1)(p+1) ⋮ (3.8)
=> (p-1)(p+1) ⋮ 24
a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).
Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).
Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)
=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24
b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).
Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).
Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)
=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24
b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
Làm như sau :
\(\left(9236+764\right)x5:2\)
\(=10000x5:2\)
\(=50000:2\)
\(=25000\)
Lấy k = 1; p = 3 => S = 6 chia hết cho 3 nhưng k = 1 không chia hết cho 2 ( p - 1= 2)
Điều trên không đúng