OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biết x=\(\sqrt{3}\) là một nghiệm của phương trình \(x^3+ax^2+bx+c=0\) a,b thuộc Q . Tìm các nghiệm còn lại
Câu 1. Đặt \(x=\sqrt[3]{a},y=\sqrt[3]{b}\to x^3+y^3=2\to2=\left(x+y\right)\left(x^2-xy+y^2\right).\)
Vì \(x^2-xy+y^2=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}>0\) nên suy ra \(x+y>0.\)
Mặt khác ta có \(x^2-xy+y^2=\frac{1}{4}\left(4x^2-4xy+4y^2\right)=\frac{1}{4}\left(x^2+2xy+y^2\right)+\frac{3}{4}\left(x^2-2xy+y^2\right)\)
\(=\frac{\left(x+y\right)^2}{4}+\frac{3\left(x-y\right)^2}{4}\ge\frac{\left(x+y\right)^2}{4}\)
Vậy \(2\ge\left(x+y\right)\cdot\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^3}{4}\to8\ge\left(x+y\right)^3\to2\ge x+y.\)
Cho biết : \(x_0=\sqrt{1006+\sqrt{2011}}-\sqrt{1006-\sqrt{2011}}\)
là nghiệm của phương trình ẩn x : \(x^3+ax^2+bx+14=0\) (với a,b thuộc Q)
Tìm a,b và các nghiệm còn lại của phương trình
Cho biết x = \(\sqrt{2}\) là 1 nghiệm của phương trình x3 + ax2 + bx + c = 0 với các hệ số hữu tỉ. Tìm các nghiệm còn lại
làm đi
tôi cũng là roronoa zoro đây
a. CMR: A = căn 2 + căn 3 là số vô tỉ
b. Cho căn n là nghiệm của phương trình: x3+ax2+bx+c = 0 ( a, b, c thuộc Q ), n là số tự nhiên không chính phương. Tìm các nghiệm còn lại.
b. Cho căn n là nghiệm của phương trình: x3+ax2+bx+c = 0 ( a, b, c thuộc Q ), n là số tự nhiên không chính phương. Tìm các nghiệm còn lại
biết a,b,c thuộc Q và căn 3 là 1 nghiệm của pt x3+ax2+bx+c=0 .Tìm các nghiệm còn lại của nó
biết x=√3 là một nghiệm của phương trình x3+ax2+bx+c=0 a,b thuộc Q . Tìm các nghiệm còn lại
căn3.A=B ,A,B thuộc Q => A=B=0
=> \(x-\sqrt{3}=0\)
lập phương lên là ra a,b,c
Cho phương trình \(x^4+ax^3+bx^2+5x+2=0\)có nghiệm \(x=1+\sqrt{2}\)
Tìm các nghiệm còn lại của phương trình
casio hả. thay \(x=1+\sqrt{2}\) vào=> quan hệ a và bdùng viet
Cho a,b,c là các số hửu tỉ, n là số tự nhiên ko là số chính phương. Biết rằng phương trình: \(x^3+ax^2+bx+c=0\)có 1 nghiệm là x=\(\sqrt{n}\)
Tìm các nghiệm còn lại
giúp mị vs nì
Câu 1. Đặt \(x=\sqrt[3]{a},y=\sqrt[3]{b}\to x^3+y^3=2\to2=\left(x+y\right)\left(x^2-xy+y^2\right).\)
Vì \(x^2-xy+y^2=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}>0\) nên suy ra \(x+y>0.\)
Mặt khác ta có \(x^2-xy+y^2=\frac{1}{4}\left(4x^2-4xy+4y^2\right)=\frac{1}{4}\left(x^2+2xy+y^2\right)+\frac{3}{4}\left(x^2-2xy+y^2\right)\)
\(=\frac{\left(x+y\right)^2}{4}+\frac{3\left(x-y\right)^2}{4}\ge\frac{\left(x+y\right)^2}{4}\)
Vậy \(2\ge\left(x+y\right)\cdot\frac{\left(x+y\right)^2}{4}=\frac{\left(x+y\right)^3}{4}\to8\ge\left(x+y\right)^3\to2\ge x+y.\)