tìm số tự nhiên x sao cho
45 là bội của x trừ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
...
b) Ta có : \(2x+1\inƯ\left(28\right)=\left\{\pm1;\pm2;\pm4;\pm7;\pm12;\pm28\right\}\)
Mà \(2x+1\)là số chẵn
\(\Rightarrow2x+1\in\left\{\pm1;\pm7\right\}\)
...
c) Ta có : \(x+15\)là bội của \(x+3\)
\(\Rightarrow x+15⋮x+3\)
\(\Rightarrow x+3+12⋮x+3\)
Vì \(x+3⋮x+3\)
\(\Rightarrow12⋮x+3\)
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
...
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Tự lập bảng nha
\(b,28⋮2x+1\)
\(2x+1\inƯ\left(28\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
Ta có bảng
2x+1 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
2x | 0 | -2 | 1 | -3 | 6 | -8 | 13 | -15 |
x | 0 | -1 | 1/2 | -3/2 | 3 | -4 | 13/2 | -15/2 |
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
\(\Rightarrow x+3\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Tự lập bảng
\(d,\left(x+1\right)\left(y-1\right)=3\)
\(\Rightarrow x+1;y-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 0 | -2 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
\(45\) là bội của (x-2)
\(\Rightarrow\left(x-2\right)\in B\left(45\right)\)
\(\Rightarrow\left(x-2\right)\in\left\{0;45;90;135;...\right\}\)
\(\Rightarrow x\in\left\{2;47;92;137;...\right\}\)
1) \(B\left(24\right)=\left\{24;48;72;96\right\}\)
\(B\left(39\right)=\left\{39;78\right\}\)
2) a) \(x+20⋮x+2\)
\(\Rightarrow x+20-\left(x+2\right)⋮x+2\)
\(\Rightarrow x+20-x-2⋮x+2\)
\(\Rightarrow18⋮x+2\)
\(\Rightarrow x+2\in\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow x\in\left\{-1;0;1;4;7;16\right\}\)
\(\Rightarrow x\in\left\{0;1;4;7;16\right\}\left(x\in N\right)\)
b) \(x+5⋮4x+69\)
\(\Rightarrow4\left(x+5\right)-\left(4x+69\right)⋮4x+69\)
\(\Rightarrow4x+20-4x-69⋮4x+69\)
\(\Rightarrow-49⋮4x+69\)
\(\Rightarrow4x+69\in\left\{1;7;49\right\}\)
\(\Rightarrow x\in\left\{-17;-\dfrac{31}{2};-20\right\}\)
\(\Rightarrow x\in\varnothing\left(x\in N\right)\)
c) \(10x+23⋮2x+1\)
\(\Rightarrow10x+23-5\left(2x+1\right)⋮2x+1\)
\(\Rightarrow10x+23-10x-5⋮2x+1\)
\(\Rightarrow18⋮2x+1\)
\(\Rightarrow2x+1\in\left\{1;2;3;6;9;18\right\}\)
\(\Rightarrow x\in\left\{0;\dfrac{1}{2};1;\dfrac{5}{2};4;\dfrac{17}{2}\right\}\)
\(\Rightarrow x\in\left\{0;1;4\right\}\left(x\in N\right)\)
Vì x + 20 là bội của x + 2
\(\Rightarrow\) x + 20 \(⋮\) x + 2
\(\Rightarrow\) (x + 2) + 18 \(⋮\) x + 2
\(\Rightarrow\) 18 \(⋮\) x + 2 (vì x + 2 chia hết cho x + 2)
\(\Rightarrow\) x + 2 \(\in\) Ư(18) = {1; 2; 3; 6; 9; 18}
Lập bảng giá trị:
x + 2 | 1 | 2 | 3 | 6 | 9 | 18 |
x | -1 | 0 | 1 | 4 | 7 | 16 |
Chọn/Loại | Loại | Chọn | Chọn | Chọn | Chọn | Chọn |
Vậy x \(\in\) {0; 1; 4; 7; 16}
Ta có:x+20=x+2+18
Để x+20 là bội của x+2 thì 18 chia hết cho x+2
\(\Rightarrow x+2\inƯ\left(18\right)=\left\{-18,-9,-6,-3,-2,-1,1,2,3,6,9,18\right\}\)
Vì x là số tự nhiên nên x+2\(\ge2\) nên \(x+2\in\left\{2,3,6,9,18\right\}\)
\(\Rightarrow x\in\left\{0,1,4,7,16\right\}\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
\(a,12⋮x-1\)
\(x-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Ta lập bảng xét giá trị
x - 1 1 -1 2 -2 3 -3 4 -4 12 -12
x 2 0 3 -1 4 -2 5 -3 13 -11
\(c,x+15⋮x+3\)
\(x+3+12⋮x+3\)
\(12⋮x+3\)
Tự lập bảng , lười ~~~
\(d,\left(x+1\right)\left(y-1\right)=3\)
Ta lập bảng
x+1 | 1 | -1 | 3 | -3 |
y-1 | 3 | -3 | 1 | -1 |
x | 2 | 0 | 2 | -4 |
y | 4 | -2 | 2 | 0 |
i, Theo bài ra ta có : ( olm thiếu dấu và == nên trình bày kiủ nài )
\(x⋮10,x⋮12,x⋮15\)và \(100< x< 150\)
Gợi ý : Phân tích thừa số nguyên tố r xét ''BC'' ( chắc là BC )
:>> Hc tốt
45 là bội của x - 2
=> 45 \(⋮\)x - 2
=> x - 2 \(\inƯ\left(45\right)\)(1)
Vì \(x\inℕ\Rightarrow x\ge0\Rightarrow x-2\ge-2\)(2)
Từ (1) và (2) => \(x-2\in\left\{1;-1;3;5;9;15;45\right\}\)
=> \(x\in\left\{3;1;5;7;11;17;47\right\}\)
Vậy \(x\in\left\{3;1;5;7;11;17;47\right\}\)