K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

b) \(\frac{10-x}{100}+\frac{20-x}{110}+\frac{30-x}{120}=3\)

\(\Leftrightarrow\frac{10-x}{100}-1+\frac{20-x}{110}-1+\frac{30-x}{120}-1=0\)

\(\Leftrightarrow\frac{-x-90}{100}+\frac{-x-90}{110}+\frac{-x-90}{120}=0\)

\(\Leftrightarrow-x-90\left(\frac{1}{100}+\frac{1}{110}+\frac{1}{120}\right)=0\)

\(\Rightarrow-x-90=0\)

Vì \(\frac{1}{100}+\frac{1}{110}+\frac{1}{120}\ne0\)

\(-x-90=0\)

\(-x=0+90\)

\(-x=90\)

\(\Rightarrow x=-90\)

21 tháng 7 2021

\(\frac{x+1}{2}+\frac{x+5}{3}+\frac{x+11}{4}+\frac{x+19}{5}=10\)

\(\Rightarrow\frac{x+1}{2}-1+\frac{x+5}{3}-2+\frac{x+11}{4}-3+\frac{x+19}{5}-4=0\)

\(\Rightarrow\frac{x-1}{2}+\frac{x-1}{3}+\frac{x-1}{4}+\frac{x-1}{5}=0\)

\(\Rightarrow\left(x-1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)=0\)

\(\Rightarrow x-1=0\)Vì \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\ne0\)

\(\Rightarrow x=1\)

\(b,\left(1\right)4Al+3O_2\underrightarrow{^{to}}2Al_2O_3\\ \left(2\right)Al_2O_3+3H_2SO_4\rightarrow Al_2\left(SO_4\right)_3+3H_2O\\ \left(3\right)Al_2\left(SO_4\right)_3+3BaCl_2\rightarrow3BaSO_4\downarrow+2AlCl_3\\ \left(4\right)AlCl_3+3AgNO_3\rightarrow Al\left(NO_3\right)_3+3AgCl\downarrow\\ \left(5\right)Al\left(NO_3\right)_3+3KOH\rightarrow Al\left(OH\right)_3\downarrow+3KNO_3\\ \left(6\right)2Al\left(OH\right)_3\underrightarrow{^{to}}Al_2O_3+3H_2O\)

\(d,\left(1\right)3Fe+2O_2\underrightarrow{^{to}}Fe_3O_4\\ \left(2\right)Fe_3O_4+4CO\underrightarrow{^{to}}3Fe+4CO_2\\ \left(3\right)FeO+H_2\underrightarrow{^{to}}Fe+H_2O\\ \left(4\right)Fe+4HNO_3\rightarrow Fe\left(NO_3\right)_3+NO+2H_2O\\ \left(5\right)2Fe\left(NO_3\right)_3+Fe\rightarrow3Fe\left(NO_3\right)_2\\ \left(6\right)Fe\left(NO_3\right)_2+2KOH\rightarrow Fe\left(OH\right)_2\downarrow+2KNO_3\\ \left(7\right)4Fe\left(OH\right)_2+O_2+2H_2O\rightarrow4Fe\left(OH\right)_3\)

1 tháng 12 2021

\(b,\Leftrightarrow\left\{{}\begin{matrix}a=2;b\ne3\\2a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-3\end{matrix}\right.\\ b,\text{Gọi }M\left(x_0;y_0\right)\text{ là điểm cần tìm }\Leftrightarrow y_0=3x_0\\ M\left(x_0;y_0\right)\in\left(d\right)\Leftrightarrow2x_0+3=y_0=3x_0\Leftrightarrow x_0=3\Leftrightarrow y_0=9\\ \text{Vậy }M\left(3;9\right)\text{ là điểm cần tìm}\)

a) Ta có: \(x-\dfrac{1}{2}=\left|\dfrac{3}{7}\right|\)

nên \(x-\dfrac{1}{2}=\dfrac{3}{7}\)

hay \(x=\dfrac{3}{7}+\dfrac{1}{2}=\dfrac{6}{14}+\dfrac{7}{14}=\dfrac{13}{14}\)

b) Ta có: |x-1|=0

nên x-1=0

hay x=1

c) Ta có: \(\left|x+1\right|\ge0\forall x\)

\(\left|y-2\right|\ge0\forall y\)

Do đó: \(\left|x+1\right|+\left|y-2\right|\ge0\forall x,y\)

Dấu '=' xảy ra khi x=-1 và y=2

d) Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}\)

mà x-y=-4

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x-y}{3-5}=\dfrac{-4}{-2}=2\)

Do đó: x=6; y=10

e) Ta có: 3x=4y

nên \(\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{4}}\)

Đặt \(\dfrac{x}{\dfrac{1}{3}}=\dfrac{y}{\dfrac{1}{4}}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}k\\y=\dfrac{1}{4}k\end{matrix}\right.\)

Ta có: xy=48

nên \(\dfrac{1}{3}k\cdot\dfrac{1}{4}k=48\)

\(\Leftrightarrow k^2\cdot\dfrac{1}{12}=48\)

\(\Leftrightarrow k^2=48\cdot12=576\)

hay \(k\in\left\{24;-24\right\}\)

Trường hợp 1: k=24

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}k=\dfrac{1}{3}\cdot24=8\\y=\dfrac{1}{4}k=\dfrac{1}{4}\cdot24=6\end{matrix}\right.\)

Trường hợp 2: k=-24

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}k=\dfrac{1}{3}\cdot\left(-24\right)=-8\\y=\dfrac{1}{4}k=\dfrac{1}{4}\cdot\left(-24\right)=-6\end{matrix}\right.\)

30 tháng 1 2022

Sửa đề thành 96 cho dễ làm nha

\(\left(x-3\right)\left(x+1\right)\left(x+2\right)\left(x+6\right)=96\)

\(\Leftrightarrow\left[\left(x-3\right)\left(x+6\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]=96\)

\(\Leftrightarrow\left(x^2+3x-18\right)\left(x^2+3x+2\right)=96\)

Đặt \(x^2-3x-8=a\)

<=> (a - 10) (a + 10) = 96

\(\Leftrightarrow a^2-100=96\)

\(\Leftrightarrow a^2=196\)

\(\Leftrightarrow\left[{}\begin{matrix}a=14\\a=-14\end{matrix}\right.\)

Giải típ đc chứ ??

b: =>(x+1)(x-1)-(x+3)(x-3)=2x^2+6x

=>2x^2+6x=x^2-1-x^2+9=8

=>2x^2+6x-8=0

=>x^2+3x-4=0

=>(x+4)(x-1)=0

=>x=-4 hoặc x=1(loại)

a: =>x^3+2x-2x(x^2+1)=0

=>x^3+2x-2x^3-2x=0

=>-x^3=0

=>x=0(nhận)

c: =>(x-2)(x+2)-(x+5)^2=x^2-8

=>x^2-4-x^2-10x-25=x^2-8

=>x^2-8=-10x-29

=>x^2+10x+21=0

=>(x+3)(x+7)=0

=>x=-3 hoặc x=-7

NV
10 tháng 4 2021

d. \(\dfrac{\pi}{2}< a;b< \pi\Rightarrow sina>0;sinb>0\)

\(sina=\sqrt{1-cos^2a}=\dfrac{4}{5}\Rightarrow tana=\dfrac{sina}{cosa}=-\dfrac{4}{3}\)

\(sinb=\sqrt{1-cos^2b}=\dfrac{5}{13}\Rightarrow tanb=-\dfrac{5}{12}\)

Vậy:

\(sin\left(a-b\right)=sina.cosb-cosa.sinb=\dfrac{4}{5}.\left(-\dfrac{12}{13}\right)-\left(-\dfrac{3}{5}\right)\left(\dfrac{5}{13}\right)=...\)

\(cos\left(a-b\right)=cosa.cosb-sina.sinb=...\) (bạn tự thay số bấm máy)

\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana.tanb}=...\)

\(cot\left(a+b\right)=\dfrac{1}{tan\left(a+b\right)}=\dfrac{1-tana.tanb}{tana+tanb}=...\)

e.

\(0< y< \dfrac{\pi}{2}\Rightarrow cosy>0\Rightarrow cosy=\sqrt{1-sin^2y}=\dfrac{4}{5}\)

\(\Rightarrow tany=\dfrac{siny}{cosy}=\dfrac{3}{4}\)

Vậy: \(tan\left(x+y\right)=\dfrac{tanx+tany}{1-tanx.tany}=...\)

\(cot\left(x-y\right)=\dfrac{1}{tan\left(x-y\right)}=\dfrac{1+tanx.tany}{tanx-tany}=...\)

5 tháng 2 2022

Đề bài đâu rồi em?

14 tháng 12 2021

Câu d có thể liệt kê ra, hoặc làm như sau:

Dễ dàng nhận ra với lần đầu tiên tung ra mặt có số chấm là 1,2,5,6 thì chỉ có 1 khả năng để 2 lần cách nhau 2 chấm là 3,4,3,4

Còn với các chấm 3 và 4 xuất hiện ở lần đầu thì có 2 khả năng tung lần 2 để 2 lần gieo cách nhau 2 chấm

Như vậy n(C) = 4.1 + 2.2 = 8