-x2+4x-5<0 với mọi x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = - 3\(x\).(\(x-5\)) + 3(\(x^2\) - 4\(x\)) - 3\(x\) - 10
A = - 3\(x^2\) + 15\(x\) + 3\(x^2\) - 12\(x\) - 3\(x\) - 10
A = (- 3\(x^2\) + 3\(x^2\)) + (15\(x\) - 12\(x\) - 3\(x\)) - 10
A = 0 + (3\(x-3x\)) - 10
A = 0 - 10
A = - 10
Đặt t = x 2 – 4x ta được
t 2 + 8 t + 15 = t 2 + 3 t + 5 t + 15 = t(t + 3) + 5(t + 3) = (t + 5)(t + 3)
= ( x 2 – 4 x + 5 ) ( x 2 – 4 x + 3 ) = ( x 2 – 4 x + 5 ) ( x 2 – 3 x – x + 3 ) = ( x 2 – 4 x + 5 ) ( x ( x – 3 ) – ( x – 3 ) ) = ( x 2 – 4 x + 5 ) ( x – 1 ) ( x – 3 )
Vậy số cần điền là -3
Đáp số cần chọn là: A
\(a,\Rightarrow\left(2x-5\right)^2+2\left(2x-5\right)\left(x+2\right)+\left(x+2\right)^2=0\\ \Rightarrow\left(2x-5+x+2\right)^2=0\\ \Rightarrow3x-3=0\\ \Rightarrow x=1\\ b,\Rightarrow9-\left(x^2-5x\right)^2=9\\ \Rightarrow x^2-5x=0\\ \Rightarrow x\left(x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Phương trình ⇔ 4 x − 17 ≥ 0 x 2 − 4 x − 5 = 4 x − 17 2
⇔ x ≥ 17 4 x 2 − 5 x − 5 2 = 4 x − 17 2
⇔ x ≥ 17 4 ( x 2 − 8 x + 12 ) ( x 2 − 22 ) = 0 ⇔ x ≥ 17 4 x 2 − 8 x + 12 = 0 x 2 − 22 = 0
⇔ x ≥ 17 4 x = 2 ∨ x = 6 x = ± 22 ⇔ x = 6 x = 22 ⇒ P = 22 2 + 6 = 28
Đáp án cần chọn là: C
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
Ta có
I = ( x 2 + 4 x + 5 ) ( x 2 + 4 x + 6 ) + 3 = ( x 2 + 4 x + 5 ) ( x 2 + 4 x + 5 + 1 ) + 3 = x 2 + 4 x + 5 2 + x 2 + 4 x + 5 + 3 = x 2 + 4 x + 5 2 + x 2 + 4 x + 4 + 1 + 3 = x 2 + 4 x + 5 2 + x + 2 2 + 4
Ta có x 2 + 4 x + 5 = x 2 + 4 x + 4 + 1
= x + 2 2 + 1 ≥ 1; Ɐx nên x 2 + 4 x + 5 2 ≥ 1; Ɐx
Và x + 2 2 ≥ 0; Ɐx x 2 + 4 x + 5 2 + x + 2 2 + 4 ≥ 1 + 4
ó x 2 + 4 x + 5 2 + x + 2 2 + 4 ≥ 5
Dấu “=” xảy ra khi => x = -2
Vậy giá trị nhỏ nhất của I là 5 khi x = -2
Đáp án cần chọn là: B
1) \(\left(\dfrac{1}{2}x+3\right)\left(x^2-4x-6\right)\)
\(=\dfrac{1}{2}x^3-2x^2-3x+3x^2-12x-18\)
\(=\dfrac{1}{2}x^3+x^2-15x-18\)
2) \(\left(6x^2-9x+15\right)\left(\dfrac{2}{3}x+1\right)\)
\(=4x^3+6x^2-6x^2-9x+10x+15\)
\(=4x^3+x+15\)
3) Ta có: \(\left(3x^2-x+5\right)\left(x^3+5x-1\right)\)
\(=3x^5+15x^2-3x^2-x^4-5x^2+x+5x^3+25x-5\)
\(=3x^5-x^4+5x^3+10x^2+26x-5\)
4) Ta có: \(\left(x-1\right)\left(x+1\right)\left(x-2\right)\)
\(=\left(x^2-1\right)\left(x-2\right)\)
\(=x^3-2x^2-x+2\)
Trả lời:
\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)
\(=-\left(x-2\right)^2-1\le-1< 0\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy - x2 + 4x - 5 < 0 với mọi x
Ta có : \(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left[\left(x-2\right)^2+1\right]=-\left(x-2\right)^2-1\)
Vì ( x-2)2 > 0 Với mọi x và 1 > 0
Nên \(-\left(x-2\right)^2-1< 0\forall x\)
Vậy.................