K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1. Tính            a) (x + 2y)2;                           b) (x - 3y)(x + 3y);               c) (5 - x)2.            d) (x - 1)2;                              e) (3 - y)2                               f) (x - )2.Bài 2. Viết các biểu thức sau dưới dạng bình phương của một tổng:            a) x2 + 6x + 9;                       b) x2 + x + ;                       c) 2xy2 + x2y4 + 1.Bài 3. Rút gọn biểu thức:a) (x + y)2 + (x - y)2;b) 2(x - y)(x + y) +(x - y)2 + (x +...
Đọc tiếp

Bài 1. Tính

            a) (x + 2y)2;                           b) (x - 3y)(x + 3y);               c) (5 - x)2.

            d) (x - 1)2;                              e) (3 - y)2                               f) (x - )2.

Bài 2. Viết các biểu thức sau dưới dạng bình phương của một tổng:

            a) x2 + 6x + 9;                       b) x2 + x + ;                       c) 2xy2 + x2y4 + 1.

Bài 3. Rút gọn biểu thức:

a) (x + y)2 + (x - y)2;

b) 2(x - y)(x + y) +(x - y)2 + (x + y)2;

c) (x - y + z)2 + (z - y)2 + 2(x - y + z)(y - z).

Bài 4. Ứng dụmg các hằng đẳng thức đáng nhớ để thực hiện các phép tính sau;

            a) (y - 3)(y + 3);                                            b) (m + n)(m2 - mn + n2);

            c) (2 - a)(4 + 2a + a2);                                  d) (a - b - c)2 - (a - b + c)2;

            e) (a - x - y)3 - (a + x - y)3;              f) (1 + x + x2)(1 - x)(1 + x)(1 - x + x2);

Bài 5. Hãy mở các dấu ngoặc sau:

            a) (4n2 - 6mn + 9m2)(2n + 3m)                   b) (7 + 2b)(4b2 - 4b + 49);

            c) (25a2 + 10ab + 4b2)(5a - 2b);                 d)(x2 + x + 2)(x2 - x - 2).

Bài 6. Tính giá trị biểu thức:

            a) x2 - y2 tại x = 87                                       với y = 13;

            b) x3 - 3x2 + 3x - 1                                                    Với x = 101;

            c) x3 + 9x2 + 27x + 27                                              với x = 97;

            d) 25x2 - 30x + 9                                                       với x = 2;

            e) 4x2 - 28x + 49                                                       với x = 4.

Bài 7. Đơn giản các biểu thức sau và tính giá trị của chúng:

            a) 126 y3 + (x - 5y)(x2 + 25y2 + 5xy)                    với x = - 5, y = -3;

            b) a3 + b3 - (a2 - 2ab + b2)(a - b)                             với a = -4, b = 4.

Bài 8. Sử dụng hằng đẳng thức đáng nhớ để thực hiện các phép tính sau:

            a) (a + 1)(a + 2)(a2 + 4)(a - 1)(a2 + 1)(a - 2);

            b) (a + 2b - 3c - d)(a + 2b +3c + d);

            c) (1 - x - 2x3 + 3x2)(1 - x + 2x3 - 3x2);

            d) (a6 - 3a3 + 9)(a3 + 3);

            e) (a2 - 1)(a2 - a + 1)(a2 + a + 1).

Bài 9. Tìm x, biết:

a) (2x + 1)2 - 4(x + 2)2 = 9;                         b) (x + 3)2 - (x - 4)( x + 8) = 1;

c) 3(x + 2)2 + (2x - 1)2 - 7(x + 3)(x - 3) = 36;

d)(x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1;

e) (x + 1)3 - (x - 1)3 - 6(x - 1)2 = -19.

Bài 10.Tính nhẩm theo các hằng đẳng thức các số sau:

            a) 192; 282; 812; 912;                                    b) 19. 21; 29. 31; 39. 41;

            c) 292 - 82; 562 - 462; 672 - 562;

Bài 11. Chứng mih các hằng đẳng thức sau:

            a) a2 + b2 = (a + b)2 - 2ab;                                       b) a4 + b4 = (a2 + b2)2 - 2a2b2;

            c) a6 + b6 = (a2 + b2)[(a2 + b2)2 - 3a2b2];                d) a6 - b6 = (a2 - b2)[(a2 + b2)2 - a2b2].

3
21 tháng 7 2021

Trả lời:

Bài 1. Tính:

a) ( x + 2y )2 = x2 + 2.x.2y + ( 2y )2 = x2 + 4xy + 4y2

b) ( x - 3y ) ( x + 3y ) = x2 - ( 3y )2 = x2 - 9y2 

c) ( 5 - x )2 = 52 - 2.5.x + x2 = 25 - 10x + x2

d) ( x - 1 )2 = x2 + 2x + 1

e) ( 3 - y )2 = 32 - 2.3.y + y2 = 9 - 6y + y2                             

21 tháng 7 2021

Trả lời:

Bài 2. Viết các biểu thức sau dưới dạng bình phương của một tổng:

a) x2 + 6x + 9 = x2 + 2.x.3 + 32 =  ( x + 3 )2     

b) lỗi đề     

c) 2xy2 + x2y4 + 1 = ( xy2 )2 + 2.xy2 + 1 = ( xy2 + 1 )2

Bài 3. Rút gọn biểu thức:

a) (x + y)2 + (x - y)2 = [ ( x + y ) - ( x - y ) ] [ ( x + y ) + ( x - y ) ] = ( x + y - x + y ) ( x + y + x - y ) = 2y.2x = 4xy

b) 2 ( x - y ) ( x + y ) + ( x - y )2 + ( x + y )2 = ( x - y )2 + 2 (x - y ) ( x + y ) + ( x + y )2 = ( x - y + x + y )2 = ( 2x )2 = 4x2

c) ( x - y + z )2 + ( z - y )2 + 2 ( x - y + z )( y - z ) = ( x - y + z )2 + 2 ( x - y + z )( y - z ) + ( y - z )2 = ( x - y + z + y - z )2 = x2

25 tháng 10 2023

Bài 1: 

a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)

\(x^2\) -  16 - 5\(x\) - 5 + \(x^2\) + \(x\) 

= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)

= 2\(x^2\) - 4\(x\) - 21

25 tháng 10 2023

b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)

=  3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7

= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)

= - 3\(x^2\) + 3\(xy\) - 3

19 tháng 10 2020

a)B=3x-2y3-6x2y2+xy

   B=(3x3-6x2y2)+(xy-2y3)

   B=3x2(x-2y2)+y(x-2y2)

    B=(x-2y2)(3x2+y)
tại x=\(\frac{2}{3}\)và y=\(\frac{1}{2}\)ta có B=(x-2y2)(3x2+y)=(\(\frac{2}{3}\)-2*\(\frac{1}{2}\)^2 )(3*\(\frac{2}{3}\)^2+\(\frac{1}{2}\))=\(\frac{1}{6}\)*\(\frac{11}{6}\)=\(\frac{11}{36}\)

b)C= 2x+xy2-x2y-2y

   C=(2x-2y)+(xy2-x2y)

   C=2(x-y)-xy(x-y)

   C=(2-xy)(x-y)

tại x=\(-\frac{1}{2}\)và y=\(-\frac{1}{3}\)ta có C=(2-xy)(x-y)=(2-\(-\frac{1}{2}\)*\(-\frac{1}{3}\))(\(-\frac{1}{2}\)+\(\frac{1}{3}\))=\(\frac{-11}{36}\)

21 tháng 8 2023

Bài 12:

a) \(\left(\dfrac{1}{2}x+4\right)^2\)

\(=\left(\dfrac{1}{2}x\right)^2+2\cdot\dfrac{1}{2}x\cdot4+4^2\)

\(=\dfrac{1}{4}x^2+4x+16\)

b) \(\left(7x-5y\right)^2\)

\(=\left(7x\right)^2-2\cdot7x\cdot5y+\left(5y\right)^2\)

\(=49x^2-70xy+25y^2\)

c) \(\left(6x^2+y^2\right)\left(y^2-6x^2\right)\)

\(=\left(y^2+6x^2\right)\left(y^2-6x^2\right)\)

\(=y^4-36x^4\)

d) \(\left(x+2y\right)^2\)

\(=x^2+2\cdot x\cdot2y+\left(2y\right)^2\)

\(=x^2+4xy+4y^2\)

e) \(\left(x-3y\right)\left(x+3y\right)\)

\(=x^2-\left(3y\right)^2\)

\(=x^2-9y^2\)

f) \(\left(5-x\right)^2\)

\(=5^2-2\cdot5\cdot x+x^2\)

\(=25-10x+x^2\)

21 tháng 8 2023

\(11,\)

\(a,\left(7x+4\right)^2-\left(7x+4\right)\left(7x-4\right)\)

\(=\left(7x+4\right)\left(7x+4-7x+4\right)\)

\(=\left(7x+4\right).8=56x+32\)

\(b,\left(x+2y\right)^2-6xy\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x+2y-6xy\right)\)

15 tháng 6 2021

bài 1:

a) x(x-2)-5y-(x-2)=(x-5y)(x-2)

b) =(2x-3-4x)(2x-3+4x)=(-2x-3)(6x-3)

bài 2 bạn tự luyện nhé

3 tháng 9 2021

????

10 tháng 8 2016

Bài 1:

\(A=x^2y-y+xy^2-x=\left(x^2y+xy^2\right)-\left(x+y\right)\\ =xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)

Voqis x=-1;y=3 ta có:

\(A=\left(-1+3\right)\left(-1\cdot3-1\right)=2\cdot\left(-4\right)=-8\)

b) \(B=x^2y^2+xy+x^3+y^3=\left(x^2y^2+x^3\right)+\left(xy+y^3\right)\\ =x^2\left(y^2+x\right)+y\left(x+y^2\right)=\left(x+y^2\right)\left(x^2+y\right)\)

Với x=-1;y=3 ta có:

\(B=\left(-1+3^2\right)\left(-1^2+3\right)=8\cdot2=16\)

c) \(C=2x+xy^2-x^2y-2y=\left(2x-2y\right)+\left(xy^2-x^2y\right)\\ =2\left(x-y\right)+xy\left(y-x\right)=\left(x-y\right)\left(2-xy\right)\)

Với x=-1;y=3 ta có:

\(C=\left(-1-3\right)\left(2-\left(-1\right)\cdot3\right)=-4\cdot5=-20\)

d) phân tích tt

13 tháng 7 2017

Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)

b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)

c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)

Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2   -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy

15 tháng 7 2016

Bài 1:

A=x2 +y2 -2x-2y+2xy+5

=x2 +y2 -2x-2y+2xy+1+4

=xy+x2-x+xy+y2-y-y-x+1+4

=x(x+y-1)+y(x+y-1)-1(x+y-1)

=(x+y-1)(x+y-1)

=(x+y-1)2+4.Với x+y=3

=>A=(3-1)2+4=22+4=8

Bài 2:

B=x^2 +4y^2-2x-4y-4xy+10

=-2xy+x2-x-2xy+4y2+2y-x+2y+1-8y+9

=x(x-2y-1)-2y(x-2y-1)-1(x-2y-1)-8y+9

=(x-2y-1)(x-2y-1)-8y+9

=(x-2y-1)2-8y+9

Với x-2y=5.Ta có:... tự thay

Bài 3: chịu

19 tháng 7 2021

Trả lời:

Bài 4:

b, B =  ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 ) 

= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1 

= x8 - 1

Thay x = 2 vào biểu thức B, ta có:

28 - 1 = 255

c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 ) 

= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1

= x7 + 1

Thay x = 2 vào biểu thức C, ta có:

27 + 1 = 129

d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 ) 

= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x

= x

Thay x = - 5 vào biểu thức D, ta có:

D = - 5

Bài 5: 

a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )

= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4

= x4 - y4

Thay x = 2; y = - 1/2 vào biểu thức A, ta có:

A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16

b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 ) 

= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5 

= a5 + a4b - ab4 - b5

Thay a = 3; b = - 2 vào biểu thức B, ta có:

B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65

c, ( x2 - 2xy + 2y2 ) ( x+ y) + 2x3y - 3x2y+ 2xy3 

= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y+ 2xy3

= x4 + 2y4

Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:

( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16