tinh 1+2+3+4+...+99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{2}+\dfrac{2}{2^2}+\dfrac{3}{2^3}+.......+\dfrac{99}{2^{99}}+\dfrac{100}{2^{100}}\)
\(\Leftrightarrow2B=1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+\dfrac{3}{2^4}+........+\dfrac{98}{2^{99}}+\dfrac{99}{2^{100}}\)
\(\Leftrightarrow2B-B=\left(1+\dfrac{1}{2^2}+\dfrac{2}{2^3}+........+\dfrac{99}{2^{100}}\right)-\left(\dfrac{1}{2}+\dfrac{2}{2^2}+......+\dfrac{100}{2^{100}}\right)\)
\(\Leftrightarrow B=\dfrac{1}{2}+\dfrac{1}{2^2}+..........+\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)
Đặt :
\(A=\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\)
\(\Leftrightarrow2A=1+\dfrac{1}{2}+\dfrac{1}{2^2}+........+\dfrac{1}{2^{99}}\)
\(\Leftrightarrow2A-A=\left(1+\dfrac{1}{2}+......+\dfrac{1}{2^{99}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+.....+\dfrac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\dfrac{1}{2^{100}}\)
\(\Leftrightarrow B=1-\dfrac{1}{2^{100}}-\dfrac{100}{2^{100}}\)
\(\Leftrightarrow B=\dfrac{2^{100}-101}{2^{100}}\)
1/
Đặt A = 1+(-2)+3+(-4)+...+19+(-20)
A = ( 1+3+5+... + 19 ) - ( 2+4+6+... + 20 )
Mỗi nhóm trên có số hạng là:
( 19-10):2+1 = 10 số hạng
A = ( 1+19 ).10:2 - ( 20+2).10:2
A = 100 - 110
A = -10
2/
1 - 2 + 3 - 4 + ... + 99 - 100
= ( 1 - 2 ) + ( 3 - 4 ) + ... + ( 99 - 100 )
= ( - 1 ) + ( - 1 ) + ... + ( - 1 )
Từ 1 → 100 có 100 số hạng mà chia 2 số 1 nhóm
⇒ Số nhóm là:
100 : 2 = 50
mà mỗi nhóm bằng - 1
⇒ Tổng = - 50.
3/
a, 2-4+6-8+...+48-50
= ( 2-4)+( 6-8)+...+( 48-50)
= -2-2-...-2
= ( -2). 12
= -24
4/
-1+2-5+7-..+97-99
=(-1-99)+(-3-97)+...+(-49-51)
=(-100)+(-100)+...+(-100)
Có 50 cặp -100
Nên Tổng bằng : -100.50=-5000
Vậy....=-5000
5/
1+2-3-4+.....+97+98-99-100
=1+(2-3-4)+5+.....+97+(98-99-100)
=1+0+0+0+......+0+(-101)
=1+(-101)
=-100
Ta có : 1 + (-2) + 3 + (-4) + ...... + 19 + (-20)
= [1 + (-2)] + [3 + (-4)] + ...... + [19 + (-20)]
= -1 + -1 + -1 + ..... + -1
= -1.10
= -10
1. 1+-(2)+3+(-4)+......+19+(-20)=(-1)+(-1)+....+(-1)=(-1).10=-10
2.1-2+3-4+.....+99-100=-1+-1+...+-1=-1.50=-50
\(\frac{1}{2}\)+ \(\frac{2}{3}\)+\(\frac{3}{4}\)+ ... + \(\frac{99}{100}\)
= \(\frac{2-1}{2}\)+ \(\frac{3-1}{3}\)+ \(\frac{4-1}{4}\)+ ... + \(\frac{100-1}{100}\)
= \(\frac{2}{2}\)- \(\frac{1}{2}\)+ \(\frac{3}{3}\)- \(\frac{1}{3}\)+ \(\frac{4}{4}\)- \(\frac{1}{4}\)+ ... + \(\frac{100}{100}\)- \(\frac{1}{100}\)
= \(1\)- \(\frac{1}{2}\)+ \(\frac{1}{2}\)- \(\frac{1}{3}\)+ \(\frac{1}{3}\)- \(\frac{1}{4}\)+ ... + \(\frac{1}{99}\)- \(\frac{1}{100}\)
= \(1\)- \(\frac{1}{100}\)
= \(\frac{99}{100}\)
Đặt biểu thức là A
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+98.99.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\)
\(3A=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100\)
\(3A=98.99.100\Rightarrow A=98.33.100\)
a) 1 + (-2) + 3 + (-4) + .. + 19 + (-20)
= (-1) + (-1) + ... + (-1) (có 10 số -1)
= (-1) . 10
= -10
b) 1 - 2 + 3 - 4 + ... + 99 - 100
= (-1) + (-1) + ... + (-1) (có 50 số -1)
= (-1) . 50
= -50
c) 2 - 4 + 6 - 8 + ... + 48 - 50
= (-2) + (-2) + ... + (-2) (có 25 số -2)
= (-2) . 25
= -50
d) -1 + 3 - 5 + 7 - ... + 97 - 99
= (-1) + (-2) + (-2) + ... (-2) (có 49 số -2)
= (-1) + (-2) . 49
= (-1) + (-98)
= -99
e) 1 + 2 - 3 - 4 + ... + 97 + 98 - 99 - 100
= 1 + 2 - 3 - 4 + ... + 97 + 98 - 99 - 100 + 101 (ta cộng thêm 101 cho dễ tính)
= 1 + (2 - 3 - 4 + 5) + ... + (98 - 99 - 100 + 101)
= 1 + 0 + ... + 0
= 1 - 101 (ta bớt 101 để ra kết quả vì lúc nãy thêm 101)
= -100
Dãy trên có số số hạng là :
( 99 - 1 ) : 1 + 1 = 99 ( số )
Tổng của dãy là :
( 99 + 1 ) x 99 : 2 = 4950
Đáp số : 4950
1+2+3+..+99
số các số là:(99-1):1+1=99(số)
tổng là:99.(99+1):2=4950