\(\frac{-11}{12}\).y + 0,25 =\(\frac{5}{6}\). Tìm y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{-3}{5}.y=\frac{21}{10}\)
\(y=\frac{21}{10}:\frac{-3}{5}\)
\(y=\frac{-7}{2}\)
vậy \(y=\frac{-7}{2}\)
b) \(y:\frac{3}{8}=-1\frac{31}{33}\)
\(y:\frac{3}{8}=\frac{-64}{33}\)
\(y=\frac{-64}{33}.\frac{3}{8}\)
\(y=\frac{-8}{11}\)
vậy \(y=\frac{-8}{11}\)
c) \(1\frac{2}{5}.y+\frac{3}{7}=\frac{-4}{5}\)
\(\frac{7}{5}.y+\frac{3}{7}=\frac{-4}{5}\)
\(\frac{7}{5}.y=\frac{-4}{5}-\frac{3}{7}\)
\(\frac{7}{5}.y=\frac{-43}{35}\)
\(y=\frac{-43}{35}:\frac{7}{5}\)
\(y=\frac{-43}{49}\)
vậy \(y=\frac{-43}{49}\)
d) \(\frac{-11}{12}.y+0,25=\frac{5}{6}\)
\(\frac{-11}{12}.y=\frac{5}{6}-0,25\)
\(\frac{-11}{12}.y=\frac{7}{12}\)
\(y=\frac{7}{12}:\frac{-11}{12}\)
\(y=\frac{-7}{11}\)
vậy \(y=\frac{-7}{11}\)
a) \(y=\frac{21}{10}:\left(-\frac{3}{5}\right)=-\frac{7}{2}\)
b) \(y=-1\frac{31}{33}.\frac{3}{8}=-\frac{8}{11}\)
c) \(1\frac{2}{5}.y=-\frac{4}{5}-\frac{3}{7}=-\frac{43}{35}\Rightarrow y=-\frac{43}{35}:1\frac{2}{5}=-\frac{43}{49}\)
d) \(-\frac{11}{12}.y=\frac{5}{6}-0,25=\frac{7}{12}\Rightarrow y=\frac{7}{12}:\left(-\frac{11}{12}\right)=-\frac{7}{11}\)
ta co : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) va x.y.z=20
Dat : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
x=12k3
y=9k3
z=5k3
x.y.z=540k3
20 = 540k3
k3 =27
k = +-3
Voi : \(k=3\Rightarrow x=36;y=27;z=15\)
Voi :\(k=-3\Rightarrow x=-36;y=-27;z=-15\)
a) Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
=>x=12k;y=9k;z=5k
Thay x=12k;y=9k;z=5k vào biểu thức x.y.z=20 ta được
(12k)(9k)(5k)=20
12k.9k.5k=20
540.\(k^3\)=20
k\(^3\)=\(\frac{1}{27}\)
=>k=\(\frac{1}{3}\)
=>\(x=\frac{1}{3}.12=4\)
\(y=\frac{1}{3}.9=3\)
\(z=\frac{1}{3}.5=\frac{5}{3}\)
Vậy x=4;y=3;z=\(\frac{5}{3}\)
b)Ta có:
\(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{2}z\)=>\(\frac{6x}{11}=\frac{9y}{2}=\frac{18z}{5}\)=>\(\frac{6x}{11.18}=\frac{9y}{2.18}=\frac{18z}{5.18}\)=>\(\frac{6x}{198}=\frac{9y}{36}=\frac{18z}{90}\)
=>\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{-120}{-24}=5\)
=>\(\frac{x}{33}=5\)=>\(x=5.33=165\)
\(\frac{y}{4}=5\)=>\(y=5.4=20\)
\(\frac{z}{5}=5\)=>\(z=5.5=25\)
Vậy x=165;y=20;z=25
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
Ta có: \(\frac{y}{3}+y\cdot\frac{2}{3}=\frac{y}{12}+\frac{11}{6}\)
=> \(\frac{y}{3}+\frac{2y}{3}=\frac{y}{12}+\frac{22}{12}\)
=> \(\frac{y+2y}{3}=\frac{y+22}{12}\)
=> \(\frac{3y}{3}=\frac{y+22}{12}\)
=> \(y=\frac{y+22}{12}\)
=> y + 22 = 12y
=> y - 12y = 22
=> -11y = 22
=> y = 22 : (-11) = -2
Vậy y = -2
-11/12.y+1/4=5/6
-11/12.y =5/6-1/4
-11/12.y =7/12
y =7/12:-11/12
y =-7/11
\(\frac{-11}{12}.y+0,25=\frac{5}{6};-\frac{11}{12}.y=\frac{7}{12};y=-\frac{7}{11}\)