chứng minh đa thức luôn dương \(x^2+3x+3\) chứng minh đa thức luôn âm \(-x^2-3x-5\) GIÚP MÌNH VỚI !!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) (với mọi x)
Vậy ........
\(2,a,\left(x-3\right)\left(1-x\right)-2=x-x^2-3+3x-2=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)=-\left(x^2-2.x.2+2^2+1\right)=-\left[\left(x-2\right)^2+1\right]=-1-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>-1-\left(x-2\right)^2\le-1< 0\) (với mọi x)
Vậy........
\(b,\left(x+4\right)\left(2-x\right)-10=2x-x^2+8-4x-10=-x^2-2x-2=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)\)
\(=-\left(x^2+2.x.1+1^2+1\right)=-\left(x+1\right)^2+1=-1-\left(x+1\right)^2\le-1< 0\) (với mọi x)
Vậy.......
a) Ta có: \(m=\left(4x+3\right)^2-2x\left(x+6\right)-5\left(x-2\right)\left(x+2\right)=16x^2+24x+9-2x^2-12x-5\left(x^2-4\right)\)
\(=14x^2+12x+9-5x^2+20=9x^2+12x+29\)
b) \(9x^2+12x+29=\left(9x^2+12x+16\right)+12=\left(3x+4\right)^2+12\ge12\)
Dấu "=" xảy ra khi 3x+4=0 => x=\(\frac{-4}{3}\) => đa thức trên luôn dương.
`x^4+2x^2+1`
`=(x^2)^2 + 2.x^2 .1 + 1^2`
`=(x^2+1)^2 > 0 forall x`.
x4 - x3 + 3x2 - 2x + 2
= x4 - x3 + x2 + 2x2 - 2x + 2
= x2(x2 - x + 1) + 2(x2 - x + 1)
= (x2 + 2)(x2 - x + 1)
= (x2 + 2)(x2 - x + 1/4 + 3/4)
= (x2 + 2)[(x - 1/2)2 + 3/4]
x2 + 2 lớn hơn hoặc bằng 2
(x - 1/2)2 + 3/4 lớn hoăn hoặc bằng 3/4
(x2 + 2)[(x - 1/2)2 + 3/4] lớn hơn hoặc bằng 3/2 > 0 (đpcm)
Gọi x1,x2 lần lượt là nghiệm của 2 đa thức f(x) và g(x)
Ta có:\(\hept{\begin{cases}ax_1+b=0\Rightarrow x_1=-\frac{b}{a}\\bx_2+a=0\Rightarrow x_2=-\frac{a}{b}\end{cases}}\)
\(\Rightarrow x_1x_2=-\frac{b}{a}.-\frac{a}{b}=1>0\)
Hay x1,x2 cùng dấu(đpcm)
\(P\left(x\right)=ax+b\left(a,b\ne0\right)\)
\(Q\left(x\right)=bx+a\left(a,b\ne0\right)\)
Nghiệm của \(P\left(x\right)\)là số dương
=>\(ax+b=0=>x=-\frac{b}{a}\)
tương tự , Nghiệm của \(Q\left(x\right)\)là số dương
=> \(bx+a=0=>x=-\frac{a}{b}\)
=> \(\frac{a}{b}>0,\frac{b}{a}>0\left(dpcm\right)\)
x2 -x + 2 = x2 - 2x.\(\frac{1}{2}\) + \(\frac{1}{4}\) +\(\frac{7}{4}\)
= (x -\(\frac{1}{2}\) )2 + \(\frac{7}{4}\)
theo đề bài ta có
x^2-x-2
=x^2-2x1/2+1/4-1/4+2
=(x^2-2x1/2+1/4)+(2-1/4)
=(x-1/2)^2+7/4
vì (x-1/2)^2>0
=>(x-1/2)^2+7/4>7/4
vậy đa thức này trong phép chia luôn dương với mọi x
a,đa thức f(x)=2x^2-8x+25 luôn dương vơi mọi x
ta có 2x^2 luôn dương
25 là số dương
Th1:8x là số âm
Suy ra f(x)2x^2-(-8x)+25(dpcm)
Th2:8x là số dương
Vì 2x^x\(\ge\)8x suy ra 2x^2-8x\(\ge\)0
Ko chắc vì làm theo suy nghĩ của t :V
cho mk sửa lại:
\(f\left(x\right)=2x^2-8x+25=2.\left(x^2-4x+4\right)+17=2.\left(x-2\right)^2+17>0\forall x\)
\(g\left(x\right)=-x^2+7x-43=-\left(x^2-7x+43\right)=-\left(x^2-7x+\frac{49}{4}-\frac{49}{4}+43\right)\)
\(=-\left(x-\frac{7}{2}\right)^2-\frac{123}{4}< 0\forall x\)
Vậy....
x^2+3x+3
=x^2+3x+9/4+3/4
=(x+3/2)^2+3/4>=3/4>0 với mọi x
-x^2-3x-5
=-x^2-3x-3-2
Có x^2+3x+3>0
=>-x^2-3x-3<0
<=>đccm