K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1𝑥+2𝑥−2=0
\frac{1}{x}+\frac{2}{x}-2=0x1+x22=0
1𝑥+2𝑥+𝑥(−2)𝑥=0
1+2+𝑥(−2) / 𝑥=0
1+2−2𝑥 / 𝑥=0
1+2−2𝑥𝑥=0
\frac{{\color{#c92786}{1}}+{\color{#c92786}{2}}-2x}{x}=0x1+22x=0
3−2𝑥𝑥=0
3−2𝑥𝑥=0
\frac{{\color{#c92786}{3-2x}}}{x}=0x32x=0
−2𝑥+3𝑥=0
x = 3/2
 
 
20 tháng 7 2021

Trả lời:

\(\frac{1}{x}+\frac{2}{x-2}=0\)\(\left(ĐKXĐ:x\ne0;x\ne2\right)\)

\(\Leftrightarrow\frac{x-2}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}=0\)

\(\Rightarrow x-2+2x=0\)

\(\Leftrightarrow-x-2=0\)

\(\Leftrightarrow x=-2\left(tm\right)\)

Vậy x = - 2 là nghiệm của pt.

4 tháng 3 2019

pT <=>\(\frac{x^4}{\left(x-2\right)^2}+\frac{x^2}{x-2}-2=0\)

đk: x khác 2

Đặt \(\frac{x^2}{x-2}=t\)

Ta có phương trình:

\(t^2+t-2=0\Leftrightarrow t^2+2t-t-2=0\Leftrightarrow t\left(t+2\right)-\left(t+2\right)=0\Leftrightarrow\left(t+2\right)\left(t-2\right)=0\)

<=> \(\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)

Với t=2 ta có:

\(\frac{x^2}{x-2}=2\Leftrightarrow x^2=2x-4\Leftrightarrow x^2-2x+4=0\Leftrightarrow\left(x-1\right)^2+3=0\)vô lí

Với t=-2:

\(\frac{x^2}{x-2}=-2\Leftrightarrow x^2=-2x+4\Leftrightarrow x^2+2x=4\Leftrightarrow\left(x+1\right)^2=5\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)(tm)

Vậy...

Ta có: \(\dfrac{x+1}{99}+\dfrac{x+2}{98}+...+\dfrac{x+50}{50}+50=0\)

\(\Leftrightarrow\dfrac{x+1}{99}+1+\dfrac{x+2}{98}+1+...+\dfrac{x+50}{50}+1=0\)

\(\Leftrightarrow\dfrac{x+100}{99}+\dfrac{x+100}{98}+...+\dfrac{x+100}{50}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{98}+...+\dfrac{1}{50}\right)=0\)

mà \(\dfrac{1}{99}+\dfrac{1}{98}+...+\dfrac{1}{50}>0\)

nên x+100=0

hay x=-100

Vậy: S={-100}

16 tháng 2 2021

\(\dfrac{x+1}{99}+\dfrac{x+2}{98}+...+\dfrac{x+50}{50}+50=0\)

\(\Leftrightarrow\left(\dfrac{x+1}{99}+1\right)+\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)+...+\left(\dfrac{x+50}{50}+1\right)=0\)

\(\Leftrightarrow\dfrac{x+100}{99}+\dfrac{x+100}{98}+...+\dfrac{x+100}{50}=0\)

\(\Leftrightarrow\left(x+100\right).\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+...+\dfrac{1}{50}\right)=0\)

\(\Leftrightarrow x+100=0\) (vì \(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+...+\dfrac{1}{50}>0\) )

\(\Leftrightarrow x=-100\)

5 tháng 5 2017

Câu 2/

Điều kiện xác định b tự làm nhé:

\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)

\(\Leftrightarrow x^4-25x^2+150=0\)

\(\Leftrightarrow\left(x^2-10\right)\left(x^2-15\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=10\\x^2=15\end{cases}}\)

Tới đây b làm tiếp nhé.

6 tháng 5 2017

a. ĐK: \(\frac{2x-1}{y+2}\ge0\)

Áp dụng bđt Cô-si ta có: \(\sqrt{\frac{y+2}{2x-1}}+\sqrt{\frac{2x-1}{y+2}}\ge2\)

\(\)Dấu bằng xảy ra khi  \(\frac{y+2}{2x-1}=1\Rightarrow y+2=2x-1\Rightarrow y=2x-3\) 

Kết hợp với pt (1) ta tìm được x = -1, y = -5 (tmđk)

b. \(pt\Leftrightarrow\left(\frac{6}{x^2-9}-1\right)+\left(\frac{4}{x^2-11}-1\right)-\left(\frac{7}{x^2-8}-1\right)-\left(\frac{3}{x^2-12}-1\right)=0\)

\(\Leftrightarrow\left(15-x^2\right)\left(\frac{1}{x^2-9}+\frac{1}{x^2-11}+\frac{1}{x^2-8}+\frac{1}{x^2-12}\right)=0\)

\(\Leftrightarrow x^2-15=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)

26 tháng 2 2020

ĐẶt x+1/x = m

suy ra x2+1/x2=m2-2

Vậy m2-2+9/2m+7=0

2m2+9m+10=0

(2m2+4m) +(5m+10)=0

2m(m+2)+5(m+2)=0

\(\Leftrightarrow\orbr{\begin{cases}m+2=0\\2m+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-2\\m=\frac{-5}{2}\end{cases}}\)

Với m=-2

x+1/x=-2 hay x2+2x+1=0

x=-1

Với m=-5/2 làm  tương tự

20 tháng 4 2018

a/ Đặt \(\hept{\begin{cases}\frac{x+1}{x-2}=a\\\frac{x+1}{x-4}=b\end{cases}}\) thì có

\(a^2+b-\frac{12b^2}{a^2}=0\)

\(\Leftrightarrow\left(a^2-3b\right)\left(a^2+4b\right)=0\)

b/ \(2x^2+3xy-2y^2=7\)

\(\Leftrightarrow\left(2x-y\right)\left(x+2y\right)=7\)

13 tháng 3 2020

\(\frac{1}{x}+\frac{2}{x-2}=0\)

\(\Leftrightarrow x-2+2x=0\)

\(\Leftrightarrow3x-2=0\)

\(\Leftrightarrow3x=2\)

\(\Leftrightarrow x=\frac{2}{3}\)

Vậy ...

13 tháng 3 2020

\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne2\end{cases}}\)

\(\frac{1}{x}+\frac{2}{x-2}=0\)\(\Leftrightarrow\frac{x-2}{x\left(x-2\right)}+\frac{2x}{x\left(x-2\right)}=0\)

\(\Leftrightarrow\frac{x-2+2x}{x\left(x-2\right)}=0\)\(\Leftrightarrow3x-2=0\)\(\Leftrightarrow3x=2\)\(\Leftrightarrow x=\frac{2}{3}\)( thoả mãn ĐKXĐ )

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{2}{3}\right\}\)