Cho A = 72980 - 521000. CMR: A chia hết cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đính chính câu A, phải cộng với 2 mới chia hết cho 3 (vì tổng số các chữ số bằng 3), nên theo đề cộng cho 3 không phù hợp, bạn xem lại đề câu a.
Câu A
Ta có \(A=10^{2023}⋮10\)
Nên \(A+3⋮3\)
\(\Rightarrow dpcm\)
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
A=72980-521000=(724)245-(524)250=(...6)245-(...6)250
=...6-...6=...0 chia hết cho 10
=>đpcm