K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2021

Vì \(\left(x-1\right)^2=x^2-2x+1\)

\(VT=-6\left(x-1\right)^2=-6\left(x^2-2x+1\right)=VP\)

Vậy ta có đpcm 

Ta có: \(-6\left(x-1\right)^2\)

\(=-6\left(x^2-2x+1\right)\)(đpcm)

22 tháng 10 2021

a) x2 – x + 1 

=(x2 – x + 1/4 )+3/4

=(x-1/2)2+3/4

ta có (x-1/2)2>=0

(x-1/2)2​+3/4>=​+3/4>0

vậy (x-1/2)2​+3/4>0 với mọi số thực x

b)  -x2+2x -4

= -x2+2x -1-3

=-(x2-2x +1)-3

=-(x-2)2​-3

ta có (x-2)2>=0

=>-(x-2)2=<0

=>-(x-2)2​-3=<​-3<0

vậy -(x-2)2​-3<0 với mọi số thực x

 

 

30 tháng 5 2017

 Thay x = 2 vào vế trái phương trình (1):

2 2  – 5.2 + 6 = 4 – 10 + 6 = 0

Vế trái bằng vế phải, vậy x = 2 là nghiệm của phương trình (1).

Thay x = 2 vào vế trái phương trình (2):

2 + (2 - 2) (2.2 + l) = 2 + 0 = 2

Vế trái bằng vế phải, vậy x = 2 là nghiệm của phương trình (2).

`@` `\text {Ans}`

`\downarrow`

Gửi c!

loading...

loading...

loading...

27 tháng 6 2023

Bài 1: 

a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)

\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)

\(=10x^2+10x^2\)

\(=20x^2\)

b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)

\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)

\(=-4x^4+9x^3+4x^2-44x\)

a:

Thay x=2 vào (1), ta được:

\(2^2-5\cdot2+6=0\)(đúng)

Thay x=2 vào (2), ta được:

\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)

b: (1)=>(x-2)(x-3)=0

=>S1={2;3}

 (2)=>\(x+2x^2+x-4x-2-2=0\)

\(\Leftrightarrow x^2+x-2=0\)

=>(x+2)(x-1)=0

=>S2={-2;1}

vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)

2 tháng 3 2021

Bài dài quá, lần sau chia nhỏ câu hỏi nhé!!!!!

12 tháng 9 2021

đúng vậy

a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(\Leftrightarrow6x-9+4-2x=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

1 tháng 10 2021

giải phần còn lại giúp mình được ko?

AH
Akai Haruma
Giáo viên
22 tháng 7 2021

Lời giải:
a.

$A=(x+6)^2-(x+2)^2+2[(x-5)^2-(x-3)^2]$

$=(x+6-x-2)(x+6+x+2)+2[(x-5-x+3)(x-5+x-3)]$

$=4(2x+8)+2(-2)(2x-8)$

$=4(2x+8)-4(2x-8)=4[(2x+8)-(2x-8)]=4.16=64$ không phụ thuộc vào $x$

b.

$B=(x^3-2^3)-(x^3+2^3)=-16$ không phụ thuộc vào $x$

c.

$C=x^4+2x^2-[(x^2+3)^2-(2x)^2]$

$=x^4+2x^2-(x^4+6x^2-4x^2)$

$=x^4+2x^2-(x^4+2x^2)=0$ không phụ thuộc vào $x$

 

a) Ta có: \(A=\left(x+6\right)^2+2\left(x-5\right)^2-\left(x+2\right)^2-2\left(x-3\right)^2\)

\(=x^2+12x+36+2\left(x^2-10x+25\right)-\left(x^2+4x+4\right)-2\left(x^2-6x+9\right)\)

\(=x^2+12x+36+2x^2-20x+50-x^2-4x-4-2x^2+12x-18\)

\(=34\)

b) Ta có: \(B=\left(x-2\right)\left(x^2+2x+4\right)-\left(x+2\right)\left(x^2-2x+4\right)\)

\(=x^3-8-x^3-8\)

=-16

c) Ta có: \(C=x^4+2x^2-\left(x^2-2x+3\right)\left(x^2+2x+3\right)\)

\(=x^4+2x^2-\left[\left(x^2+3\right)^2-4x^2\right]\)

\(=x^4+2x^2-\left(x^4+6x^2+9\right)+4x^2\)

\(=-9\)

21 tháng 8 2023

a.

\(A=6\left(x^3+2^3\right)-6x^3-2\\ =6x^3+48-6x^3-2\\ =46\)

Vậy biểu thức trên không phụ thuộc vào giá trị x.

b.

\(B=2\left(\left(3x\right)^3+1\right)-54x^3\\ =2\left(27x^3+1\right)-54x^3\\ =54x^3+2-54x^3\\ =2\)

Vậy biểu thức trên không phụ thuộc vào giá trị x.

21 tháng 8 2023

a) \(A=6\left(x+2\right)\left(x^2-2x+4\right)-6x^3-2\)

\(A=6\left(x^3+8\right)-6x^3-2\)

\(A=6x^3+48-6x^3-2\)

\(A=46\)

Vậy: ....

b) \(B=2\left(3x+1\right)\left(9x^2-3x+1\right)-54x^3\)

\(B=2\left(27x^3+1\right)-54x^3\)

\(B=54x^3+2-54x^3\)

\(B=2\)

Vậy: ...