1:tìm x,y biết
| 4x +2 |+| y-1 |=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì \(\left(4x^2-4x+1\right)^{2022}\ge0\left(\forall x\right)\),\(\left(y^2-\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}\ge0\left(\forall y\right)\),\(\left|x+y+z\right|\ge0\)
mà \(\left(4x^2-4x+1\right)^{2022}+\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)^{2022}+\left|x+y-z\right|=0\)
=>\(\left\{{}\begin{matrix}4x^2-4x+1=0\\y^2+\dfrac{4}{5}y+\dfrac{4}{25}=0\\x+y-z=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2x-1=0\\y+\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\\dfrac{1}{2}-\dfrac{2}{5}-z=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)
KL: vậy \(\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-2}{5}\\z=\dfrac{1}{10}\end{matrix}\right.\)
\(P=\frac{1}{4x^2+1}+\frac{1}{4y^2+1}+\frac{2}{xy}\)
\(=\frac{1}{4x^2+1}+\frac{1}{4y^2+1}+\frac{\frac{64}{25}}{8xy}+\frac{42}{25xy}\)
\(\ge\frac{\left(1+1+\frac{8}{5}\right)^2}{4\left(x+y\right)^2+2}+\frac{42}{\frac{25\left(x+y\right)^2}{4}}=\frac{12}{5}\)
a) 2xy + 4x - y + 5 = 0
=> 2x(y + 2) - y - 2 + 5 = - 2
=> 2x(y + 2) - (y + 2) = - 2 - 5
=> (2x - 1)(y + 2) = - 7
Ta có -7 = -1.7 = -7.1
Lập bảng xét các trường hợp
2x - 1 | 1 | -7 | -1 | 7 |
y + 2 | -7 | 1 | 7 | -1 |
x | 1 | -3 | 0 | 4 |
y | -9 | -1 | 5 | -3 |
Vậy các cặp (x;y) thỏa mãn là (1;-5) ; (-3 ; -1) ; (0 ; 5) ; (4 ; -3)
b) \(\frac{1}{3}-\frac{2}{y}=\frac{x}{2}\left(y\ne0\right)\)
=> \(\frac{x}{2}+\frac{2}{y}=\frac{1}{3}\)
=> \(\frac{xy+4}{2y}=\frac{1}{3}\)
=> 3(xy + 4) = 2y
=> 3xy + 12 = 2y
=> 2y - 3xy = 12
=> y(2 - 3x) = 12
Ta có 12 = 4.3 = 2.6 = 1.12 = -1.(-12) = (-2).(-6) . (-4).(-3)
Lập bảng xét các trường hợp
y | 1 | 12 | -1 | -12 | 3 | 4 | -3 | -4 | 2 | 6 | -2 | -6 |
2 - 3x | 12 | 1 | -12 | -1 | 4 | 3 | -4 | -3 | 6 | 2 | -6 | -2 |
x | -14/3 | 1/3 | 14/3 | 1(tm) | -2/3 | -1/3 | 2(tm) | 5/3 | -4/3 | 0(tm) | 8/3 | 4/3 |
Vậy các cặp (y;x) nguyên thỏa mãn là (-12 ; 1) ; (-3 ; 2) ; (6;0)
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
4x + 2 = 0 4x = -2 x = -1/2
<=> <=> <=>
y - 1 = 0 y = 1 y = 1
VẬY x = -1/2, y = 1
~~~HỌC TỐT~~~
có GTTĐ luôn ko âm nên vế trải phải bằng 0 => 4x+2 = y-1 = 0 => x=-1/2, y=1