Cho 2 điểm B,C cố định và điểm A di động sao cho tam giác ABC có 3 góc nhọn, đường cao AD,BE,CF giao nhau tại H, AH giao EF tại K
a) CM: Tam giác EHC đồng dạng với Tam giác FHB
b) Góc EFC= góc EBC
c) Góc BFD=góc ACB
d) CM: AD.HK=AK.HD
e) TÌm điều kiện để AD.HD đạt giá trị lớn nhất
a) Xét ΔEHC vuông tại E và ΔFHB vuông tại F có
\(\widehat{EHC}=\widehat{FHB}\)(hai góc đối đỉnh)
Do đó: ΔEHC\(\sim\)ΔFHB(g-g)
b) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
nên BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Suy ra: \(\widehat{EFC}=\widehat{EBC}\)(hai góc nội tiếp cùng chắn cung EC)
c) Xét ΔADB vuông tại D và ΔCFB vuông tại F có
\(\widehat{FBD}\) chung
Do đó: ΔADB\(\sim\)ΔCFB(g-g)
Suy ra: \(\dfrac{BA}{BC}=\dfrac{BD}{BF}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{BA}{BD}=\dfrac{BC}{BF}\)
Xét ΔBAC và ΔBDF có
\(\dfrac{BA}{BD}=\dfrac{BC}{BF}\)(cmt)
\(\widehat{ABC}\) chung
Do đó: ΔBAC\(\sim\)ΔBDF(C-g-c)
Suy ra: \(\widehat{ACB}=\widehat{BFD}\)(hai góc tương ứng)
dậy sớm v:)