Chứng minh (2101+2102+2103) chia hết (298+299+2100)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 21 + 22 + 23 + ...+ 2100 + 2101
A = 20 + 21 + 22 + 23 + ...+ 2100 + 2101
Xét dãy số:0; 1; 2; 3;...; 100; 101
Dãy số trên là dãy số cách đều với khoảng cách là: 1 - 0 = 1
Số số hạng của dãy số trên là: (101 - 0) : 1 + 1 = 102 (số)
Vì 102 : 3 = 34
Vậy nhóm ba số hạng liên tiếp của A vào nhau ta được
A = (1 + 21 + 22) + (23 + 24 + 25) + ...+ (299 + 2100 + 2101)
A = (1 + 21 + 22) + 23.(1 + 21 + 22) + ...+ 299.(1 + 21 + 22)
A = (1 + 21 + 22).(1 + 23 + ...+ 299)
A = 7.(1 + 23 + ...+ 299) ⋮ 7 (đpcm)
Mình đã làm như sau:
A=298+22-298+294+22-294+…+22+22-22
=22+22+…+22 = 4+4+…+4
ð Mỗi số hạng trong tổng đều chia hết cho 4 thì => tổng chia hết cho 4
ð A chia hết cho 4
Nhưng bé nhà mình cứ kêu đúng nhưng ko giống cách làm của học sinh lớp 6
Vậy OLM vui lòng cho mình hỏi còn cách làm nào phù hợp với học sinh lớp 6 không ah?
2100 - 299 - 298 - ... - 2 - 1 = 2100 - ( 299 + 298 + ... + 2 + 1 )
= 2100 - { ( 299 + 1 ) . [ ( 299 - 1) : 1 + 1 ] : 2 }
= 2100 - { 300 . 299 :2 }
= 2100 - 22425
= -20325
Ta có: \(A=2^{100}-2^{99}-2^{98}-...-2^2-2-1\)
\(\Leftrightarrow2A=2^{101}-2^{100}-2^{99}-...-2^3-2^2-2\)
\(\Leftrightarrow2A-A=2^{101}-2^{100}-2^{99}-...-2^3-2^2-2-2^{100}+2^{99}+2^{98}+...+2^2+2+1\)
\(\Leftrightarrow A=2^{101}-2\cdot2^{100}+1\)
\(\Leftrightarrow A=1\)
tham khảo
https://olm.vn/hoi-dap/tim-kiem?q=A=2100-299-298-297-.........-22-2-1+.+t%C3%ADnh+A&id=52301
\(A=2^{100}-2^{99}-2^{98}-...-2\)
\(\Rightarrow-2A=-2^{101}+2^{100}+2^{99}+...+2^2\)
\(\Rightarrow A-2A=2^{100}-2^{99}-...-2-2^{101}+2^{100}+...2^2\)
\(\Rightarrow-A=2^{100}+2^{100}-2^{101}-2\)
\(\Rightarrow-A=-2\Rightarrow A=2\)
\(A=2^{100}-\left(2^{99}+2^{98}+...+2+1\right)\)
Đặt \(B=2^{99}+2^{98}+...+2+1\)
\(\Rightarrow2B=2^{100}+2^{99}+...+2^2+2\)
\(\Rightarrow2B-B=2^{100}-1\Leftrightarrow B=2^{100}-1\)
\(\Rightarrow A=2^{100}-\left(2^{100}-1\right)=1\)
\(2^{100}-2^{99}+2^{98}-2^{97}+2^{96}-2^{95}+...+2^4-2^3+2^2\)
\(=\left(2^{100}-2^{99}+2^{98}\right)-\left(2^{97}-2^{96}+2^{95}\right)+...+\left(2^4-2^3+2^2\right)\)
\(=2^{96}\left(2^4-2^3+2^2\right)-2^{93}\left(2^4-2^3+2^2\right)+...+\left(2^4-2^3+2^2\right)\)
\(=12\left(2^{96}-2^{93}+...+1\right)⋮12\)
6300+6299+6298
= 6298 .( 6^2+6+1)
= 6298 . 43
Vì 43chia hết cho 43 => 6300 + 6299 + 6298 chia hết cho 43
\(A=2^{100}-2^{99}+2^{98}-2^{97}+....-2^3+2^2-2+1\\ A=\left(2^{100}+2^{98}+...+2\right)-\left(2^{99}+2^{97}+...+1\right)\)
Gọi \(\left(2^{100}+2^{98}+...+2\right)\)là B
\(B=\left(2^{100}+2^{98}+...+2\right)\\ 2B=2^{102}+2^{100}+.....+2^2\\ 2B-B=\left(2^{102}+2^{100}+.....+2^2\right)-\left(2^{100}+2^{98}+...+2\right)\\ B=2^{102}-2\)
Gọi \(\left(2^{99}+2^{97}+...+1\right)\) là C
\(C=\left(2^{99}+2^{97}+...+1\right)\\ 2C=2^{101}+2^{99}+....+2\\ 2C-C=\left(2^{101}+2^{99}+9^{97}+...+2\right)-\left(2^{99}+9^{97}+...+1\right)\\ C=2^{101}-1\)
\(A=B+C\\ =>A=2^{102}-2+2^{101}-1\\ A=2^{101}\left(2+1\right)-3\\ A=2^{101}\cdot3-3\\ A=3\cdot\left(2^{101}-1\right)\)
\(\dfrac{1}{2}A=2^{99}-2^{98}+...-1+\dfrac{1}{2}\\ \Rightarrow A-\dfrac{1}{2}A=2^{100}-\dfrac{1}{2}\\ \Rightarrow A=2^{101}-1\)
Ta có : 2^101+2^102+2^103=2^98x2^3+2^99x2^3+2^100x2^3=(2^98+2^99+2^100)x2^3 chia hết cho 2^98+2^99+2^100.