K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2015

17n+2x17n+1

= 17n+1.(17+1)

= 17n+1.18

= 17n+1.6.3 chia hết cho 3

=> đpcm

10 tháng 4 2016

làm ra 2 trường họp

a) Gọi 3 số tự nhiên liên tiếp là x,x+1,x+2(xN)x,x+1,x+2(x∈N)

- Nếu x=3kx=3k ( thỏa mãn ). Nếu x=3k+1x=3k+1 thì x+2=3k+1+2=(3k+3)3x+2=3k+1+2=(3k+3)⋮3

- Nếu x=3k+2x=3k+2 thì x+1=3k+1+2=(3k+3)3x+1=3k+1+2=(3k+3)⋮3

Vậy trong 3 số tự nhiên liên tiêp có 1 số chia hết cho 3.

b) Nhận thấy 17n,17n+1,17n+217n,17n+1,17n+2 là 3 số tự nhiên liên tiếp. Mà 17n17n không chia hết cho 3, nên trong 2 số còn lại 1 số phải 3⋮3

Do vậy: A=(17n

6 tháng 2 2021

Tự làm hay cop bạn ?

30 tháng 11 2015

Giả sử n = 1 , ta có:

A= 13 - 1.17

 = 1 - 17 = -16

Không chia hết cho 6 

24 tháng 12 2020

sai

ví dụ n>2

giả sử n=3

=>33-17.3=-24 chia hết cho 6

20 tháng 12 2017

17n^2+1 chia hết cho 6 hay 17n^2+1 chẵn => 17n^2 lẻ => n^2 lẻ => n lẻ => n ko chia hết cho 2

Mà 2 nguyên tố => (n,2) = 1

17n^2+1 chia hết cho 6 => 17n^2+1 chia hết cho 3 => 17n^2 ko chia hết cho 3 => n^2 ko chia hết cho 3 ( vì 17 và 3 là 2 số nguyên tố cùng nhau) => n ko chia hết cho 3

Mà 3 nguyên tố => (n,3) = 1

=> ĐPCM

k mk nha

Trần Long Tăng

Ta có :

\(n^3+11n\)

\(=n^3-n+12n\)

\(=n\left(n^2-1\right)+12n\)

\(=\left(n-1\right)\left(n-1\right)n+12n\)

Vì \(n-1\text{ };\text{ }n\text{ };\text{ }n+1\)là tích 3 số nguyên liên tiếp nên : \(n\left(n-1\right)\left(n+1\right)\) chia hết cho 6 .

Mà 12n chia hết cho 6 .

\(\Rightarrow n^3+11n\)chia hết cho 6 .

20 tháng 9 2018

Cho a,b,c khác 0 và a+b+c=0.Tính giá trị biểu thức

Q=1/a^2+b^2-c^2 + 1/b^2+c^2-a^2 +1/a^2+c^2-b^2

2 tháng 11 2016

17n; 17n+1; 17n+2 là 3 số nguyên liên tiếp nên có đúng một số chia hết cho 3 

* nếu n chia hết cho 3 => 17n chia hết cho 3 => (17n+1) và (17n+2) đều không chia hết cho 3, mà 3 là số nguyên tố => (17n+1)(17n+2) không chia hết cho 3 

* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chi hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3 

=> (17n+1)(17n+2) chia hết cho 3 

Tóm lại: (17n+1)(17n+2) chia hết cho 3 khi và chỉ khi n không chia hết cho 3 

------------------------------ 

Giải xong câu 2 là hiểu ngay bạn ghi đó là các số mủ 

17ⁿ, 17ⁿ+1 và 17ⁿ+2 là 3 số tự nhiên liên tiếp, nên có một số chia hết cho 3, mà 17ⁿ không chia hết cho 3, nên một trong hai số 17ⁿ+1 hoặc 17ⁿ+2 chia hết cho 3 

=> (17ⁿ+1)(17ⁿ+2) chia hết cho 3 

2 tháng 11 2016

* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chia hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3 
=> (17n+1)(17n+2) chia hết cho 3 

 17n; 17n+1; 17n+2 là 3 số nguyên liên tiếp nên có đúng một số chia hết cho 3 
* nếu n chia hết cho 3 => 17n chia hết cho 3 => (17n+1) và (17n+2) đều không chia hết cho 3, mà 3 là số nguyên tố => (17n+1)(17n+2) không chia hết cho 3 

* 17 và 3 là hai số nguyên tố cùng nhau nên nếu n không chi hết cho 3 thì 17n cũng không chia hết cho 3 => (17n+1) hoặc (17n+2) có một số chia hết cho 3 
=> (17n+1)(17n+2) chia hết cho 3 

Tóm lại: (17n+1)(17n+2) chia hết cho 3 khi và chỉ khi n không chia hết cho 3 
------------------------------ 
Giải xong câu 2 là hiểu ngay bạn ghi đó là các số mủ 
17ⁿ, 17ⁿ+1 và 17ⁿ+2 là 3 số tự nhiên liên tiếp, nên có một số chia hết cho 3, mà 17ⁿ không chia hết cho 3, nên một trong hai số 17ⁿ+1 hoặc 17ⁿ+2 chia hết cho 3 

=> (17ⁿ+1)(17ⁿ+2) chia hết cho 3 

AH
Akai Haruma
Giáo viên
25 tháng 10 2024

Lời giải:

\(A=17n+\underbrace{11....1}_{n}=18n+1\underbrace{00...0}_{n-1}+1\underbrace{00...0}_{n-2}+1\underbrace{00...0}_{n-3}+....+10+1-n\)

\(=18n+(1\underbrace{00...0}_{n-1}-1)+(1\underbrace{00...0}_{n-2}-1)+.....+(10-1)+(1-1)\)

\(=18n+\underbrace{99...9}_{n-1}+\underbrace{99...9}_{n-2}+....+9\vdots 9\) do các số hạng đều chia hết cho 9.

28 tháng 2 2016

11....11 có tổng các chữ số là n

Tổng các chữ số của A là n + 17n = 18n chia hết cho 9 

Vậy A chia hết cho 9