K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2021

Xét \(A=\frac{1}{\sqrt{x^2+1}-x}=\frac{\sqrt{x^2+1}+x}{\left(\sqrt{x^2+1}-x\right)\left(\sqrt{x^2+1}+x\right)}=\frac{\sqrt{x^2+1}+x}{x^2+1-x^2}=\sqrt{x^2+1}+x\)

Lưu ý: ĐKXĐ của A là \(x\in R\)vì \(\hept{\begin{cases}x^2+1>0\\\sqrt{x^2+1}>x\end{cases},\forall x\in R}\)

Vậy để \(A\in N\)thì \(\sqrt{x^2+1}+x=k,k\in N,k>0\Rightarrow\sqrt{x^2+1}=k-x\)

\(\Rightarrow x^2+1=x^2-2kx+k^2\Rightarrow x=\frac{k^2-1}{2k},k\in N,k>0\)

Vậy yêu cầu bài toán thỏa mãn khi x có dạng \(\frac{k^2-1}{2k},k\inℕ^∗\)

15 tháng 6 2021

a, \(A=\left(\frac{1}{1-\sqrt{x}}+\frac{1}{1+\sqrt{x}}\right):\left(\frac{1}{1-\sqrt{x}}-\frac{1}{1+\sqrt{x}}\right)+\frac{1}{1-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)

\(=\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{1-x}\right):\left(\frac{1+\sqrt{x}-1+\sqrt{x}}{1-x}\right)+\frac{1}{1-\sqrt{x}}\)

\(=\frac{2}{1-x}.\frac{1-x}{2\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{1-\sqrt{x}}=\frac{1-\sqrt{x}+\sqrt{x}}{-x+\sqrt{x}}=\frac{1}{\sqrt{x}-x}\)

b, Ta có : \(x=7+4\sqrt{3}=7+2.2\sqrt{3}=\left(\sqrt{4}+\sqrt{3}\right)^2\)

\(A=\frac{1}{\sqrt{4}+\sqrt{3}-7+4\sqrt{3}}\)

13 tháng 5 2021

a, thay m=2 vào phương trình (1) ta được:

x^2-6.x+3=0

có: \(\Delta\)1=(-6)^2-4.3=24>0

vậy phương trình có 2 nghiệm phân biệt :

x3=(6+\(\sqrt{ }\)24)/2=3+\(\sqrt{ }\)6

x4=(6-\(\sqrt{ }\)24)/2=3-\(\sqrt{ }\)6

b, từ phương trình (1) ta có :

\(\Delta\)=[-2(m+1)]^2-4.(m^2-1)=(2m+2)^2-4m^2+4=4m^2+8m+4-4m^2+4

=8m+8

để pt(1) có 2 nghiệm x1,x2 khi \(\Delta\)\(\ge\)0<=>8m+8\(\ge\)0

<=>m\(\ge\)-1

 m\(\ge\)-1 thì pt(1) có 2 nghiệm x1,x2

theo vi ét=>x1+x2=2m+2

lại có x1+x2=1<=>2m+2=1<=>m=-1/2(thỏa mãn)

vậy m=-1/2 thì pt(1) có 2 nghiệm x1+x2 thỏa mãn x1+x2=1

 

 

 

13 tháng 5 2021

\(x^2-2\left(m+1\right)x+m^2-1=0\)(1)

a,Thay m=2 vào pt (1) có

\(x^2-2\left(2+1\right)x+2^2-1=0\)

\(x^2-6x+3=0\)

\(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=3+\sqrt{6}\\x=3-\sqrt{6}\end{matrix}\right.\) khi m=2

30 tháng 4 2019

Phần a dễ bạn tự làm nha!!! :))

b, Ta có: \(\Delta^'=\left[-\left(m+1\right)\right]^2-2m=m^2+2m+1-2m=m^2+1>0\forall m\)

=> PT luôn có 2 nghiệm phân biệt

Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m\end{cases}}\)

Ta có: \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=2\)

\(\Leftrightarrow x_1+2\sqrt{x_1x_2}+x_2=2\)

\(\Leftrightarrow x_1+x_2-2+2\sqrt{x_1x_2}=0\)

\(\Leftrightarrow2\left(m+1\right)-2+2\sqrt{2m}=0\)

\(\Leftrightarrow2m+2\sqrt{2m}=0\)

\(\Leftrightarrow m+\sqrt{2m}=0\)

\(\Leftrightarrow\sqrt{m}\left(\sqrt{m}+\sqrt{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{m}=0\\\sqrt{m}+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\\sqrt{m}=-\sqrt{2}\end{cases}}}\)

Vậy: m = 0

=.= hk tốt!!

30 tháng 4 2019

a) Khi m=1 thì pt<=>x2-4x+2=0

Có:\(\Delta\)'=(-2)2-2=2>0=>pt có 2 nghiệm là x1=\(2+\sqrt{2}\)và x2=2-\(\sqrt{2}\)

b)Để pt có nghiệm thì \(\Delta\)'=(m+1)2-2\(\ge\)0<=>m\(\ge\)\(\sqrt{2}\)-1

Theo định lý Viète thì:x1+x2=2(m+1)=\(\sqrt{2}\)<=>\(\frac{\sqrt{2}-2}{2}\)

3 tháng 8 2018

Đáp án A

8 tháng 10 2023

help

 

f: ĐKXĐ: \(\dfrac{2x-1}{2-x}>=0\)

=>\(\dfrac{2x-1}{x-2}< =0\)

=>\(\dfrac{1}{2}< =x< 2\)

g: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>0\end{matrix}\right.\Leftrightarrow3< =x< 5\)

h: ĐKXĐ: \(\left\{{}\begin{matrix}x-1>=0\\x+5>=0\end{matrix}\right.\Leftrightarrow x>=1\)

15 tháng 9 2016

đề j v