chung minh rang:
khi hai tam giác đồng dạng thì tỉ số bán kính các đường tròn nội tiếp của chúng bằng tỉ số đồng dạng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AB/sinC=2R
A'B'/sinC'=2R'
mà AB/A'B'=k
và goc C=góc C'
nên 2R/2R'=AB/A'B'=k
=>R/R'=k(Đpcm)
Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'.
+) Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên:
Gọi AD và A’D' lần lượt là hai đường phân giác của ΔABC và ΔA'B'C'.
+) Lại có; AD, A’D’ lần lượt là phân giác của góc A và góc A’ nên:
a) BE // DC => ∆BEF ∽ ∆CDF
AD // BF => ∆ADE ∽ ∆BFE.
Do đó: ∆ADE ∽ ∆CFD
b) BE = AB - AE = 12 - 8 = 4cm
∆ADE ∽ ∆BFE => \(\dfrac{AE}{BE}=\dfrac{AD}{BF}=\dfrac{DE}{FD}\)
=> \(\dfrac{8}{4}=\dfrac{7}{BF}=\dfrac{10}{EF}\)
=> BF = 3,5 cm.
EF = 5 cm.
a: Xét tứ giác BNMC có
\(\widehat{BNC}=\widehat{BMC}=90^0\)
Do đó: BNMC là tứ giác nội tiếp
hay B,N,M,C cùng thuộc một đường tròn
b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
\(\widehat{NAC}\) chung
Do đó: ΔAMB\(\sim\)ΔANC
Suy ra: \(\dfrac{AM}{AN}=\dfrac{AB}{AC}\)
hay \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Xét ΔAMN và ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
\(\widehat{NAC}\) chung
Do đó: ΔAMN\(\sim\)ΔABC
3
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\)
Xét tam giác A'B'H' và tam giác ABH có:
góc A'H'B' = góc ABH (=90o)
góc A'B'H'= góc ABH (vì tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'H' đồng dạng với tam giác ABH (g.g)
Do vậy \(\dfrac{A'H'}{AH}=\dfrac{A'B'}{AB}=k\)
2/
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{A'C'}{AC}=\dfrac{B'C'}{BC}=k\) (1)
và \(\)góc B'A'M' = góc BAM \(\left(=\dfrac{1}{2}B'A'C'=\dfrac{1}{2}BAC\right)\) (2)
Xét tam giác A'B'M' và tam giác ABC có:
góc B'A'M' = góc BAM (từ 2)
góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'M' đồng dạng với tam giác ABM (g.g)
Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\) (từ 1)
3/
Có tam giác ABC đồng dạng với tam giác A'B'C'(gt)
Nên \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{\dfrac{B'C'}{2}}{\dfrac{BC}{2}}=\dfrac{B'M'}{BM}\) (1)
Xét tam giác A'B'M' và tam giác ABM có:
\(\dfrac{A'B'}{AB}=\dfrac{B'M'}{BM}\) (từ 1)
góc A'B'M' = góc ABM (tam giác ABC đồng dạng với tam giác A'B'C')
Nên tam giác A'B'M' đồng dạng với tam giác ABM (c.g.c)
Do vậy \(\dfrac{A'M'}{AM}=\dfrac{A'B'}{AB}=k\)
Hai tam giác được gọi là đồng dạng nếu một trong chúng bằng với một tam giác nhận được từ tam giác kia sau một phép vị tự. Các điều kiện cần và đủ để hai tam giác đồng dạng: