Cho tam giác ABC vuông tại A , phân giác AD , đường cao AH . Biết BD = 15 cm , CD = 20 cm . Tính BH , HC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo tính chất tia phân giác:
$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$
Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.BC$
$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$
Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)
Do đó:
$BH=35:(9+16).9=12,6$ (cm)
$CH=35:(9+16).16=22,4$ (cm)
Xét ΔABC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{16}\)
\(\Leftrightarrow HB=\dfrac{9}{16}HC\)
Ta có: \(HB+HC=BC\)
\(\Leftrightarrow HC\cdot\dfrac{25}{16}=35\)
\(\Leftrightarrow HC=22.4\left(cm\right)\)
\(\Leftrightarrow HB=12.6\left(cm\right)\)
Ta có: BC=BD+DC=15+20=35(cm)
+ AD là phân giác => DC/DB=AB/AC
=> AB/AC=20/15=4/3
=> AB=4AC/3
lại có AB^2+AC^2=BC^2
<=> 16AC^2/9+AC^2=BC^2
<=> 25AC^2/9=1225
<=> AC^2=441
có tam giác ABC vuông tại A, AH là đường cao
=> AC^2=CH.BC
=> CH=AC^2/BC=441/35=12.6(cm)
=> BH=35-12.6=22.4(cm)
tam giác ABC có AD phân giác nênAB/AC=BD/CD=15/20=3/4
BC=15+20=35
AB/AC=3/4=>AB2/AC2=9/16=>AB2/\(\left(AC^2+AB^2\right)=\)9/25
=>\(\frac{AB^2}{BC^2}=\frac{9}{25}\Rightarrow AB=\sqrt{35^2.\frac{9}{25}}=21\)
tam giác vuông ABC có AH là đường cao
BH=\(\frac{AB^2}{BC}=12.6\)
tick nhaaaaaaaaaaaaaaaaaaa
cho tam giác ABC vuông tại A. AB=15, AC=20, đg phân giác BD.
a, Tính AD
b, Gọi H là hình chiếu của A trên BC. Tính AH, HB
c, Cm tam giác AID cân
tự vẽ hình
có BC=15+20=35
ta có \(\frac{bd}{dc}=\frac{ab}{ac}\)tính chất đường phân giác
\(\Rightarrow\frac{ab}{ac}=\frac{3}{4}\Rightarrow\frac{ab}{3}=\frac{ac}{4}=k\)
ab=3k ac=4k
ta có ab2+ac2=bc2
9k2+16k2=352
25k2=1225
k=7
=>ab=3k=21
ta có ab2=bh.bc
bh=441:35=12.6
tick cho minh nha
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
đây nha