Cho tam giác ABC cân tại A , góc A nhọn. Đường cao BD và CE cắt nhau tại H, vẽ điểm M là trung điểm của BC. Cm: a)BD = CE. b)ED // BC. c)Giao điểm A, H, M thẳng hàng. d)ED < BC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
a) Xét ∆ABC có :
BD vuông góc với AC
CE vuông góc với AB
=> H là trực tâm ∆ABC(1)
M là trung điểm là BC
=> AM là trung tuyến ∆ABC(2)
=> AM vuông góc với BC
b) Vì AM là trung trực ∆ABC
Vì AM là trung tuyến ∆ABC
=> ∆ABC cân tại A
=> BM = MC
=> AD = DC
=> AE = EB
Xét ∆ vuông BMH và ∆ vuông CMH ta có :
HM chung
BM = MC
=> ∆BMH = ∆CMH ( 2 cạnh góc vuông)
=> BH = HC
Chứng minh tương tự ta có :
=> AH = HB
=> AH = HC
=> HC = AH
Xét ∆ vuông AEH và ∆ vuông HMC ta có :
AH = HC (cmt)
EHA = MHC ( đối đỉnh)
=> ∆AEH = ∆ HMC(cạnh huyền - góc nhọn)
=> AE = MC ( 2 cạnh tg ứng)
Mà AE = EB
=> MC = EB
Mà BM = MC (cmt)
=> BE = BM
=> ∆EBM cân tại E(dpcm)
Khó thật
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có:
AB = AC (ΔABC cân tại A)
∠BAD chung
⇒ ΔABD = ΔACE (cạnh huyền - góc nhọn)
⇒ BD = CE (hai cạnh tương ứng)
Vậy BD = CE