tìm x biết
( 8 - 5x ) ( x + 2 ) + 4 ( x - 2 ) ( x + 1 ) + 2( x - 2) ( x + 2 ) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow8x+16-5x^2-10x+4x^2+4x-8x-8+2x^2-8=0\)
\(\Leftrightarrow x^2-6x=0\Leftrightarrow x\left(x-6\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)
Vậy S = { 0, 6}
(8 - 5x) (x + 2) + 4(x - 2) (x + 1) + 2(x - 2) (x + 2) = 0
=> (x + 2) [ (8 - 5x) + 4(x + 1) + 2(x - 2)] = 0
=> (x + 2) (8 - 5x + 4x + 4 + 2x - 4) = 0
=> (x + 2) (x + 8) = 0
=> x + 2 = 0 hoặc x + 8 = 0
=> x = -2 hoặc x = -8
|5\(x\) - 4| = |\(x+2\)|
\(\left[{}\begin{matrix}5x-4=x+2\\5x-4=-x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}4x=6\\6x=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
vậy \(x\in\) { \(\dfrac{1}{3};\dfrac{3}{2}\)}
|2\(x\) - 3| - |3\(x\) + 2| = 0
|2\(x\) - 3| = | 3\(x\) + 2|
\(\left[{}\begin{matrix}2x-3=3x+2\\2x-3=-3x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{5}\end{matrix}\right.\)
vậy \(x\in\){ -5; \(\dfrac{1}{5}\)}
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
(8 - 5x)(x + 2) + 4(x - 2)(x + 1) + 2(x - 2)(x + 2) = 0
=> 8(x + 2) - 5x(x + 2) + 4[x(x + 1) - 2(x + 1)] + 2(x2 - 4) = 0
=> 8x + 16 - 5x2 - 10x + 4(x2 + x - 2x - 2) + 2x2 - 8 = 0
=> 8x + 16 - 5x2 - 10x + 4x2 + 4x - 8x - 8 + 2x2 - 8 = 0
=> (8x - 10x + 4x - 8x) + (16 - 8 - 8) + (-5x2 + 4x2 + 2x2) = 0
=> 0 + x2 = 0
=> x2 = 0 => x = 0
\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)
\(-5x^2-2x+16+4\left(x^2-x-2\right)+2\left(x^2-4\right)=0\)
\(-5x^2-2x+16+4x^2-4x-8+2x^2-8=0\)
\(x^2-6x=0\)
\(x\left(x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=6\end{cases}}\)
\(\left(x+2\right)-2=0\)
\(\Rightarrow x+2-2=0\)
\(\Rightarrow x=0\)
\(\left(x+3\right)+1=7\)
\(\Rightarrow x+3+1=7\)
\(\Rightarrow x+4=7\)
\(\Rightarrow x=3\)
\(\left(3x-4\right)+4=12\)
\(\Rightarrow3x-4+4=12\)
\(\Rightarrow3x=12\)
\(\Rightarrow x=4\)
\(\left(5x+4\right)-1=13\)
\(\Rightarrow5x+4-1=13\)
\(\Rightarrow5x+3=13\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\)
\(\left(4x-8\right)-3=5\)
\(\Rightarrow4x-8-3=5\)
\(\Rightarrow4x-11=5\)
\(\Rightarrow4x=16\)
\(\Rightarrow x=4\)
\(8-\left(2x+4\right)=2\)
\(\Rightarrow8-2x-4=2\)
\(\Rightarrow4-2x=2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
\(7+\left(5x+2\right)=14\)
\(\Rightarrow7+5x+2=14\)
\(\Rightarrow9+5x=14\)
\(\Rightarrow5x=5\)
\(\Rightarrow x=1\)
\(5-\left(3x-11\right)=1\)
\(\Rightarrow5-3x+11=1\)
\(\Rightarrow16-3x=1\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)