K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(a+b\sqrt{3}=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(\Leftrightarrow a+b\sqrt{3}=2-\sqrt{3}-2-\sqrt{3}\)

\(\Leftrightarrow a+b\sqrt{3}=-2\sqrt{3}\)

\(\Leftrightarrow a=0;b=-2\)

T=a+b=0+(-2)=-2

15 tháng 7 2021

\(S=\sqrt{\left(\sqrt{3}\right)^2-2\cdot2\sqrt{3}+2^2}-\sqrt{\left(\sqrt{3}\right)^2+2\cdot2\cdot\sqrt{3}+2^2}\)

\(S=\sqrt{\left(\sqrt{3}-2\right)^2}-\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(S=\left|\sqrt{3}-2\right|-\left|\sqrt{3}+2\right|=-\sqrt{3}+2-\sqrt{3}-2=0+\left(-2\right)\sqrt{3}\)

\(a=0,b=-2\)

\(T=0+-2=-2\)

 

4 tháng 6 2019

#)Giải :

a)      A = √(3+√5)-√(3-√5)-√2 

<=>A√2=√(6+2√5)-√(6-2√5)-2

<=>A√2=√(√5+1)^2-√(√5-1)-2

<=>A√2=√5+1-√5+1-2

<=>A√2=0

<=>A=0

=>√(3+√5)-√(3-√5)-√2 =0

b)       B=√(4-√7)-√ (4+√7)+√7

<=>B√2=√(8-2√7)-√(8+2√7)+2√7

<=>B√2=√(√7-1)^2-√(√7+1)^2+2√7

<=>B√2=√7-1-√7-1+2√7

<=>B√2=2√7-2

<=>B=(2√7-2)/√2

=√14-√2

                      #~Will~be~Pens~3

4 tháng 6 2019

Câu a) hình như sai đề đúng không bạn ?

b) \(B=\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}+\sqrt{7}\)

Xét \(\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)^2\)

\(=4-\sqrt{7}-2\sqrt{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}+4+\sqrt{7}\)

\(=8-2\sqrt{16-7}\)

\(=8-2\cdot3\)

\(=2\)

\(\Rightarrow\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}=-\sqrt{2}\)( vì \(\sqrt{4-\sqrt{7}}< \sqrt{4+\sqrt{7}}\))

Khi đó : \(B=-\sqrt{2}+\sqrt{7}\)

Góp ý nhẹ với bạn ๖²⁴ʱŤ.Ƥεɳɠʉїɳş༉ ( Team TST 14 ) là không biết thì đừng làm nhé 

1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)

3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)

\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)

\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)

\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)

4 tháng 1 2022

Buồn á :((

Bài này hóng từ qua nữa :((

 

7 tháng 11 2018

\(S^3=\left(\sqrt[3]{7+4\sqrt{3}+}\sqrt[3]{7-4\sqrt{3}}\right)^3\)

= \(7+4\sqrt{3}+7-4\sqrt{3}+3.\sqrt{7+4\sqrt{3}}.\sqrt{7-4\sqrt{3}}.\left(a+b\right)\)

= 14+\(3.\sqrt{49-48}.S\)

= 14+3S

=> S3-3S=14+3S-3S=14

7 tháng 11 2018

\(P=S^3-3S\)

\(P=\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)^3-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=7+4\sqrt{3}+3\left(\sqrt[3]{7+4\sqrt{3}}\right)^2.\sqrt[3]{7-4\sqrt{3}}+3.\sqrt[3]{7+4\sqrt{3}}\left(\sqrt[3]{7-4\sqrt{3}}\right)^2+7-4\sqrt{3}\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14+3\sqrt[3]{7+4\sqrt{3}}.\sqrt[3]{7-4\sqrt{3}}\text{​​}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14+3\sqrt[3]{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\text{​​}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14+3\sqrt[3]{49-48}\text{​​}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14+3\text{​​}\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\text{​​}\text{​​}-3\left(\sqrt[3]{7+4\sqrt{3}}+\sqrt[3]{7-4\sqrt{3}}\right)\)

\(P=14\)

1: \(=\dfrac{\sqrt{8+2\sqrt{7}}+\sqrt{8-2\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{7}+1+\sqrt{7}-1}{\sqrt{2}}=\dfrac{2\sqrt{7}}{\sqrt{2}}=\sqrt{14}\)

3: \(=\sqrt{6+2\sqrt{2\cdot\sqrt{3-\sqrt{3}-1}}}\)

\(=\sqrt{6+2\sqrt{2\cdot\sqrt{2-\sqrt{3}}}}\)

\(=\sqrt{6+2\sqrt{\sqrt{2}\left(\sqrt{3}-1\right)}}\)

\(=\sqrt{6+2\sqrt{\sqrt{6}-\sqrt{2}}}\)

10 tháng 10 2021

\(\sqrt{53-20\sqrt{7}}=a+b\sqrt{7}\)

\(\Leftrightarrow a+b\sqrt{7}=-5+2\sqrt{7}\)

=> a=-5; b=2

6 tháng 8 2019

a, A= \(\frac{\sqrt{48-12\sqrt{7}}}{2}-\frac{\sqrt{48+12\sqrt{7}}}{2}\)

       = \(\frac{\sqrt{\left(\sqrt{42}-\sqrt{6}\right)^2}}{2}-\frac{\sqrt{\left(\sqrt{42}+\sqrt{6}\right)^2}}{2}\)

       = \(\frac{-2\sqrt{6}}{2}\)

       = \(-\sqrt{6}\)

a: \(A=\dfrac{\left(\sqrt{7}+\sqrt{3}\right)^2+\left(\sqrt{7}-\sqrt{3}\right)^2}{4}\)

\(=\dfrac{10+2\sqrt{21}+10-2\sqrt{21}}{4}=\dfrac{20}{4}=5\)

b: \(B=6\sqrt{3}+\sqrt{3}-1-2\sqrt{2}\)

\(=7\sqrt{3}-2\sqrt{2}-1\)

26 tháng 7 2023

giải được luôn àk anh =))