Cho tam giác MNP ,với NA và PB là các đường trung tuyến.Gọi I là giao điểm của các đường thẳng NA và PB ,gọi C và D theo thứ tự là trung điểm của các đoạn thẳng IN và IP
Hỏi tứ giác ABCD là hình gì ,vì sao ( vẽ hình và giải)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 12:
:v Mình sửa P là trung điểm của EG
a) Ta có: \(\widehat{EAC}=\widehat{EAB}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\widehat{GAB}=\widehat{GAC}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\Rightarrow\widehat{EAC}=\widehat{GAB}\)
Xét tam giác EAC và tam giác BAG có:
\(\hept{\begin{cases}EA=AB\\\widehat{EAC}=\widehat{GAB}\left(cmt\right)\\AG=AC\end{cases}}\Rightarrow\Delta EAC=\Delta BAG\left(c-g-c\right)\)
\(\Rightarrow CE=BG\)( 2 cạnh t. ứng )
+) Gọi O là giao điểm của EC và BG, Gọi I là giao điểm của AC và BG
Vì \(\Delta EAC=\Delta BAG\left(cmt\right)\)
\(\Rightarrow\widehat{ACE}=\widehat{AGB}\)
Vì tam giác AIG vuông tại A nên \(\widehat{I1}+\widehat{AGB}=90^0\)(2 góc phụ nhau )
Mà \(\widehat{ACE}=\widehat{AGB}\left(cmt\right),\widehat{I1}=\widehat{I2}\)( 2 góc đối đỉnh )
\(\Rightarrow\widehat{I2}+\widehat{ACE}=90^0\)
Xét tam giác OIC có \(\widehat{I2}+\widehat{ACE}+\widehat{IOC}=180^0\left(dl\right)\)
\(\Rightarrow\widehat{IOC}=90^0\)
\(\Rightarrow BG\perp EC\)
b) Vì ABDE là hình vuông (gt)
\(\Rightarrow EB\)cắt AD tại Q là trung điểm của mỗi đường (tc)
Xét tam giác EBC có Q là trung điểm của EB (cmt) , M là trung điểm của BC (gt)
\(\Rightarrow QM\)là đường trung bình của tam giác EBC
\(\Rightarrow QM=\frac{1}{2}EC\left(tc\right)\)
CMTT: \(PN=\frac{1}{2}EC;QP=\frac{1}{2}BG,MN=\frac{1}{2}BG\)
Mà EC=BG (cm câu a )
\(\Rightarrow QM=MN=NP=PQ\)
Xét tứ giác MNPQ có \(QM=MN=NP=PQ\left(cmt\right)\)
\(\Rightarrow MNPQ\)là hình thoi ( dhnb ) (1)
CM: MN//BG , QM//EC ( dựa vào đường trung bình tam giác )
Mà \(BG\perp EC\left(cmt\right)\)
\(\Rightarrow MN\perp MQ\)
\(\Rightarrow\widehat{QMN}=90^0\)(2)
Từ (1) và (2) \(\Rightarrow MNPQ\) là hình vuông ( dhnb )
\(\)
Bài 11:
a) Ta có: \(\widehat{HAD}+\widehat{HAE}=90^0+90^0=180^0\)
\(\Rightarrow\widehat{DAE}=180^0\)
\(\Rightarrow D,A,E\)thẳng hàng
b) Vì AHBD là hình chữ nhật (gt)
\(\Rightarrow AB\)cắt DH tại trung điểm mỗi đường (tc) và AB=DH(tc)
Mà P là trung điểm của AB (gt)
\(\Rightarrow P\)là trung điểm của DH (1)
\(\Rightarrow PH=\frac{1}{2}DH,PA=\frac{1}{2}AB\)kết hợp với AB=DH (cmt)
\(\Rightarrow PH=PA\)
\(\Rightarrow P\in\)đường trung trục của AH
CMTT Q thuộc đường trung trực của AH
\(\Rightarrow PQ\)là đường trung trực của AH
c) Từ (1) => P thuộc DH
=> D,P,H thẳng hàng
d) Vì ABCD là hình chữ nhật (gt)
=> DH là đường phân giác của góc BHA (tc) mà góc BHA= 90 độ
=> góc DHA= 45 độ
CMTT AHE =45 độ
=> góc DHA+ góc AHE=90 độ
Hay góc DHE=90 độ
=> DH vuông góc với HE
a)
ta có: ABCD là hình vuông
=> AB=BC=CD=DA=>1/2AB=1/2CD=AI=JC
AI//JC
=>tứ giác AICJ là hình bình hành
gọi trung điểm của AC là K
ta có:ABCD là hình vuông=> AC và BD cắt nhau tại trung điểm của mỗi đường
=>BD cắt AC tại K(1)
ta có AICJ là hình bình hành => AC và DJ cắt nhau tại trung điểm của mỗi đường
=>DJ cắt AC tại K(2)
từ (1)(2)=> 3 đoạn thẳng AC,BD,Ị cắt nhau tại trung điểm K của chúng
b)
ta có:
góc ADB=góc DBC
AJ//IC=> góc AED=góc CFB
ta có:
\(\widehat{EAD}=180^o-\widehat{ADB}-\widehat{AED}\)
\(\widehat{FCB}=180^o-\widehat{DBC}-\widehat{CFB}\)
=>góc EAD=góc FCB
xét tam giác DEA và tam giác BFC có
AD=BC(gt)
góc ADB=góc DBC
góc EAD=góc FCB(cmt)
=>tam giác DEA=tam giác BFC(g.c.g)
=>AE=CF
c)
ta có:tứ giác AICJ là hình bình hành
=>AJ=IC
AE=CF
EJ=AJ-AE
IF=IC-FC
=>EJ=IF
EJ//IF
=>tứ giác IFJE là hình bình hành
d)
xét tam giác ACD có
DK là trung tuyến ứng với cạnh AC
AJ là trung tuyến ứng với cạnh CD
=>giao của DK và AJ là trọng tâm tam giác ACD
=>E là trọng tâm tam giác ACD
cm tương tự ta có: F là trọng tâm tam giác ABC
ta có:
E là trọng tâm tam giác ADC
=>EK=1/2DE
F là trọng tâm tam giác ABC
=>FK=1/2BF
DE=BF(tam giác DEA=tam giác BFC)
=>EK=FK
ta có:
=>FB= DE=2EK=EK+KF=EF
=>DE=EF=FB(đfcm)
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
Xét ΔMNP có
B là trung điểm của MN(gt)
A là trung điểm của MP(gt)
Do đó: BA là đường trung bình của ΔMNP(Định nghĩa đường trung bình của tam giác)
Suy ra: BA//NP và \(BA=\dfrac{NP}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔINP có
C là trung điểm của IN(gt)
D là trung điểm của IP(gt)
Do đó: CD là đường trung bình của ΔINP(Định nghĩa đường trung bình của tam giác)
Suy ra: CD//NP và \(CD=\dfrac{NP}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra AB=CD và AB//CD
Xét tứ giác ABCD có
AB//CD(cmt)
AB=CD(cmt)
Do đó: ABCD là hình bình hành(Dấu hiệu nhận biết hình bình hành)
vẽ hình giúp mik vs