tìm giá trị của x
\(\frac{\sqrt{x}-2}{\sqrt{x}}< 0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne9\\x\ne4\end{cases}}\)
\(P=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)
\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)
\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(\Leftrightarrow P=\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(\Leftrightarrow P=\frac{4x\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow P=\frac{4x}{\sqrt{x}-3}\)
b) Để P < 0
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-3< 0\Leftrightarrow4x>0\\\sqrt{x}-3>0\Leftrightarrow4x< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}< 3\Leftrightarrow x>0\\\sqrt{x}>3\Leftrightarrow x< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x< 9\Leftrightarrow x>0\left(ktm\right)\\x>9\Leftrightarrow x< 0\left(ktm\right)\end{cases}}\)
Vậy để \(P< 0\Leftrightarrow x\in\varnothing\)
Để P > 0
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-3>0\Leftrightarrow4x>0\\\sqrt{x}-3< 0\Leftrightarrow4x< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}>3\Leftrightarrow x>0\left(tm\right)\\\sqrt{x}< 3\Leftrightarrow x< 0\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow x>9\Leftrightarrow x>0\left(tm\right)\)
Vậy để \(P>0\Leftrightarrow x>9\)
c) Để \(\left|P\right|=1\)
\(\Leftrightarrow\orbr{\begin{cases}P=1\left(tm\right)\\P=-1\left(ktm\right)\end{cases}}\)
\(\Leftrightarrow\frac{4x}{\sqrt{x}-3}=1\)
\(\Leftrightarrow4x=\sqrt{x}-3\)
\(\Leftrightarrow4x-\sqrt{x}+3=0\)
\(\Leftrightarrow\left(2\sqrt{x}-\frac{1}{4}\right)^2+\frac{47}{48}=0\left(ktm\right)\)
Vậy để \(\left|P\right|=1\Leftrightarrow x\in\varnothing\)
a/
\(=\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{x-1-x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{1}\right)\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}}\)
b/ Biểu thức nhận giá trị dương khi
\(\sqrt{x}-1>=0\)
\(x>=1\)
Vậy với x>=1 thì biểu thức dương
c/ biểu thức nhận giá trị âm khi
\(\sqrt{x}-1<0\)
\(x<1\)
Vậy với x<1 thì bt âm
d/ Ta có
\(\frac{\sqrt{x}-1}{\sqrt{x}}=-5\)
\(<=>\frac{\sqrt{x}-1}{\sqrt{x}}+5=0\)
Quy đồng và rút gọn ta được
\(6\sqrt{x}-1=0\)
\(\sqrt{x}=\frac{1}{6}\)
\(x=\frac{1}{36}\)
Vậy với x=1/36 thì x=-5
tick cho mình nha công sức mà
\(a,x>0;x\ne4,9\)
\(b,Q=\left(\frac{1}{\sqrt{x}-3}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}-3}\right)\)
\(Q=\left(\frac{\sqrt{x}-\sqrt{x}+3}{x-3\sqrt{x}}\right):\left(\frac{x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right)\)
\(Q=\frac{3}{x-3\sqrt{x}}:\frac{-5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(Q=\frac{3}{\sqrt{x}\left(\sqrt{x}-3\right)}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{-5}\)
\(Q=\frac{3\sqrt{x}-6}{-5\sqrt{x}}\)
\(c,Q< 0< =>\frac{3\sqrt{x}-6}{-5\sqrt{x}}\)
\(-5\sqrt{x}< 0\)
\(< =>3\sqrt{x}-6>0\)
\(\sqrt{x}>2\)
\(x>4\)
A=\(\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
A= \(\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)=\(\frac{2x-2\sqrt{x}-\sqrt{x}+1}{x-1}=\frac{2\sqrt{x}-1}{x+1}\)
Để A=1/2 thì
\(\frac{2\sqrt{x}-1}{x+1}=\frac{1}{2}\)
nhân chéo ta đc pt \(x-4\sqrt{x}+3=0\)
giải pt ta đc x=1 (loại) hoặc x= 9
vậy x=9 TM
Để A<1 thì \(\frac{2\sqrt{x}-1}{\sqrt{x}+1}< 1\Leftrightarrow2\sqrt{x}-1< \sqrt{x}+1\Leftrightarrow\sqrt{x}< 2\)
=> x<4
vậy vs 0\(\le x< 4\) và x khác 1 TM
Mình nghĩ thế này ạ
a) Với \(x\ge0,x\ne1\)ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}-1x}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-\sqrt{x}-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)
Kết luận :
a/ \(P=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
=> \(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
\(P=\left(\frac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\left(\frac{1-x}{\sqrt{2}}\right)^2\)
\(P=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(1-\sqrt{x}\right)^2\left(1+\sqrt{x}\right)^2}{2}\)
=> \(P=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b/ Nếu 0<x<1 => \(\sqrt{x}-1< 0\); và \(\sqrt{x}>0\)
=> \(P=-\sqrt{x}\left(\sqrt{x}-1\right)>0\)
c/ \(P=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}=-x+2.\frac{1}{2}\sqrt{x}-\frac{1}{4}+\frac{1}{4}\)
=> \(P=\frac{1}{4}-\left(\sqrt{x}-\frac{1}{2}\right)^2\le\frac{1}{4}\)
=> \(P_{max}=\frac{1}{4}\)
Đạt được khi x=1/4
ĐK : x > 0
Với x > 0 thì √x > 0
nên để \(\frac{\sqrt{x}-2}{\sqrt{x}}< 0\) thì √x - 2 < 0 <=> √x < 2 <=> x < 4
Kết hợp với ĐK => Với 0 < x < 4 thì \(\frac{\sqrt{x}-2}{\sqrt{x}}< 0\)