\(\frac{\sqrt{x}-2}{\sqrt{x}}< 0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

ĐK : x > 0

Với x > 0 thì √x > 0

nên để \(\frac{\sqrt{x}-2}{\sqrt{x}}< 0\) thì √x - 2 < 0 <=> √x < 2 <=> x < 4

Kết hợp với ĐK => Với 0 < x < 4 thì \(\frac{\sqrt{x}-2}{\sqrt{x}}< 0\)

13 tháng 9 2019

\(B=\frac{x-1-4\sqrt{x}+\sqrt{x}+1}{x-1}.\frac{x-1}{x-2\sqrt{x}}\)

\(=\frac{x-3\sqrt{x}}{x-2\sqrt{x}}\)

\(=\frac{\sqrt{x}-3}{\sqrt{x}-2}\)

a.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< 1\left(x\ge0,x\ne4\right)\) 

\(\Leftrightarrow\sqrt{x}-3< \sqrt{x}-2\)

\(\Leftrightarrow3>2\)

Vay \(B< 1\left(\forall x\ge0,x\ne4\right)\)

Lát mình giải 2 câu kia,di ăn com cái

13 tháng 9 2019

b.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}< \frac{3}{2}\)

\(\Leftrightarrow2\sqrt{x}-6< 3\sqrt{x}-6\)

\(\Leftrightarrow x>0\)

Vay \(B< \frac{3}{2}\left(\forall x>0,x\ne4\right)\)

c.Ta co:

\(\frac{\sqrt{x}-3}{\sqrt{x}-2}>\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-3>x-3\sqrt{x}+2\)

\(\Leftrightarrow x-4\sqrt{x}+5< 0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+1< 0\) (vo ly)

Vay khong co gia tri nao cua x thoa man \(B>\sqrt{x}-1\)

3 tháng 3 2020

a) \(ĐKXĐ:\hept{\begin{cases}x>0\\x\ne9\\x\ne4\end{cases}}\)

\(P=\left(\frac{2+\sqrt{x}}{2-\sqrt{x}}-\frac{2-\sqrt{x}}{2+\sqrt{x}}-\frac{4x}{x-4}\right):\frac{\sqrt{x}-3}{2\sqrt{x}-x}\)

\(\Leftrightarrow P=\frac{\left(2+\sqrt{x}\right)^2-\left(2-\sqrt{x}\right)^2+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{\sqrt{x}-3}{\sqrt{x}\left(2-\sqrt{x}\right)}\)

\(\Leftrightarrow P=\frac{4+4\sqrt{x}+x-4+4\sqrt{x}-x+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)

\(\Leftrightarrow P=\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)

\(\Leftrightarrow P=\frac{4x\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(\sqrt{x}-3\right)}\)

\(\Leftrightarrow P=\frac{4x}{\sqrt{x}-3}\)

b) Để P < 0

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-3< 0\Leftrightarrow4x>0\\\sqrt{x}-3>0\Leftrightarrow4x< 0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}< 3\Leftrightarrow x>0\\\sqrt{x}>3\Leftrightarrow x< 0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x< 9\Leftrightarrow x>0\left(ktm\right)\\x>9\Leftrightarrow x< 0\left(ktm\right)\end{cases}}\)

Vậy để \(P< 0\Leftrightarrow x\in\varnothing\)

Để P > 0

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-3>0\Leftrightarrow4x>0\\\sqrt{x}-3< 0\Leftrightarrow4x< 0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}>3\Leftrightarrow x>0\left(tm\right)\\\sqrt{x}< 3\Leftrightarrow x< 0\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow x>9\Leftrightarrow x>0\left(tm\right)\)

Vậy để \(P>0\Leftrightarrow x>9\)

c) Để  \(\left|P\right|=1\)

\(\Leftrightarrow\orbr{\begin{cases}P=1\left(tm\right)\\P=-1\left(ktm\right)\end{cases}}\)

\(\Leftrightarrow\frac{4x}{\sqrt{x}-3}=1\)

\(\Leftrightarrow4x=\sqrt{x}-3\)

\(\Leftrightarrow4x-\sqrt{x}+3=0\)

\(\Leftrightarrow\left(2\sqrt{x}-\frac{1}{4}\right)^2+\frac{47}{48}=0\left(ktm\right)\)

Vậy để \(\left|P\right|=1\Leftrightarrow x\in\varnothing\)

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
3 tháng 7 2018

bài này lp 8 cx làm dc , CTV mà ngu lonee :)

nhờ vào năng lực rinegan của chúa pain , ta  có thể dễ  dàng nhìn ra ......

\(1-x=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right).\)          dkxd , x dương và x khác 1

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)-x-2}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}\left(1-\sqrt{x}\right)-\sqrt{x}+4}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}\right)\)

\(P=\frac{x+\sqrt{x}-x-2}{\sqrt{x}+1}:\left(\frac{\sqrt{x}-x-\sqrt{x}+4}{1-x}\right)\)

\(p=\frac{\left(\sqrt{x}-2\right)}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}{-\left(x-4\right)}\)

\(P=\frac{\left(\sqrt{x}-2\right)}{\sqrt{x}+1}.\frac{\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)}{-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(P=\frac{1-\sqrt{x}}{-\sqrt{x}-2}\)

B)  dkxd có x luôn dương 

   vậy ta suy ra  \(-\left(\sqrt{x}+2\right)< 0\) " âm"

vậy để \(\frac{1-\sqrt{x}}{-\left(\sqrt{x}+2\right)}< 0\)

 thì \(1-\sqrt{x}>0\)  " vì số dương chia cho số âm luôn bé hơn 0 "

      \(-\sqrt{x}>-1\Leftrightarrow\sqrt{x}< 1\)

 để p dương thì  ................  0<x<1 

c)

\(\frac{1-\sqrt{x}}{-\sqrt{x}+2}=\frac{2-\sqrt{x}+1}{-\sqrt{x}+2}=1+\frac{1}{-\sqrt{x}+2}\)

vì x dương " dkxd " 

suy ra  \(\orbr{\begin{cases}\sqrt{x}+2\ge2\\-\sqrt{x}+2\le2\end{cases}}\)

vì " năm ở mẫu " 

\(\frac{1}{-\sqrt{x}+2}\ge\frac{1}{2}\)

\(1+\frac{1}{-\sqrt{x}+2}\ge1+\frac{1}{2}=\frac{3}{2}\)

dấu = xảy ra khi x = 0

3 tháng 7 2018

d!t , sửa lại câu C , thành 2-1 , ko phải 2 +1 :) 

6 tháng 8 2016

a) \(P=\left[\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-\left(3x+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\left[\frac{\left(2\sqrt{x}-2\right)-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\right]\left(ĐK:x\ge0;x\ne9\right)\) 

\(=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\frac{-3\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{-3}{\sqrt{x}+3}\)

 

 

 

 

7 tháng 7 2017

a, ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(P=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

Ta thấy \(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}>0\forall x>0,x\ne1\)

b, P=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\frac{2}{2+\sqrt{3}}+2\sqrt{\frac{2}{2+\sqrt{3}}}+1}{\sqrt{\frac{2}{2+\sqrt{3}}}-1}\)

=\(\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\sqrt{\left(\frac{2}{\left(\sqrt{3}+1\right)^2}\right)}+1}{\sqrt{\left(\frac{2}{2+\sqrt{3}}\right)^2}-1}=\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\frac{2}{\sqrt{3}+1}+1}{\frac{2}{\sqrt{3}+1}-1}\)

\(=\frac{12+6\sqrt{3}}{1-3}=-6-3\sqrt{3}\)

7 tháng 7 2017

cậu ơi câu c đâu ạ??