K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2021

\(=\frac{x+\sqrt{x}+1}{x+1}:\left(\frac{x+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\frac{x+\sqrt{x}+1}{x+1}:\left[\frac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]\)

\(=\frac{x+\sqrt{x}+1}{x+1}:\frac{\sqrt{x}-1}{x+1}\)

\(=\frac{x+\sqrt{x}+1}{x+1}\cdot\frac{x+1}{\sqrt{x}-1}\)

\(=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}\)

Vậy ...

14 tháng 7 2021

\(M=\left(1+\frac{\sqrt{x}}{x+1}\right)\div\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)

\(=\left(\frac{x+1+\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\sqrt{x}\left(x+1\right)-\left(x+1\right)}\right)\)

\(=\left(\frac{x+1+\sqrt{x}}{x+1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\frac{x+1+\sqrt{x}}{x+1}\right):\left(\frac{x+1-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}\right)\)

\(=\frac{x+1+\sqrt{x}}{x+1}.\frac{\left(\sqrt{x}-1\right)\left(x+1\right)}{\left(\sqrt{x}-1\right)^2}\)

\(=\frac{\left(x+1+\sqrt{x}\right)\left(\sqrt{x}-1\right)\left(x+1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}=\frac{x+1+\sqrt{x}}{\sqrt{x}-1}\)

20 tháng 9 2018

Ai trả lời nhanh và chính xác mình k

⋯MUA THẺ HỌC

a) Ta có: \(A=\left(\frac{1-x\sqrt{x}}{1-\sqrt{x}}+\sqrt{x}\right)\cdot\left(\frac{1-\sqrt{x}}{1-x}\right)^2\)

\(=\left(\frac{1-x\sqrt{x}+\sqrt{x}\left(1-\sqrt{x}\right)}{1-\sqrt{x}}\right)\cdot\left(\frac{1}{1+\sqrt{x}}\right)^2\)

\(=\frac{1-x\sqrt{x}+\sqrt{x}-x}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-\left(x-1\right)\left(-1-\sqrt{x}\right)}{1-\sqrt{x}}\cdot\frac{1}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{\left(1+\sqrt{x}\right)\cdot\left(-1-\sqrt{x}\right)}{\left(1+\sqrt{x}\right)^2}\)

\(=\frac{-1\cdot\left(1+\sqrt{x}\right)^2}{\left(1+\sqrt{x}\right)^2}=-1\)

8 tháng 11 2020

A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)

=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)

Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)

9 tháng 11 2020

C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)

Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0

28 tháng 10 2017

\(B=\frac{2\left(x+4\right)}{x-3\sqrt{x}-4}+\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{8}{\sqrt{x}-4}\)

\(B=\frac{2\left(x+4\right)+\sqrt{x}\left(\sqrt{x}-4\right)-8\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(B=\frac{2x+8+x-4\sqrt{x}-8\sqrt{x}-8}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(B=\frac{3x-12\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(B=\frac{3\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-4\right)}\)

\(B=\frac{3\sqrt{x}}{\sqrt{x}+1}\)

vậy \(B=\frac{3\sqrt{x}}{\sqrt{x}+1}\)

24 tháng 7 2017

a, dk \(x\ge0.x\ne1\)

\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)

 =\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)

phan b,c ban tu lam not nhe dai lam mk ko lam dau  mk co vc ban rui

12 tháng 8 2019

a) đk : \(x\ge0\) ; \(x\ne1\)

A=\(\left(\frac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}+1\right)}-\frac{x+1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\)

\(=\left(\frac{-\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}+1\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)\) \(=\frac{1-\sqrt{x}}{x+1}\)

b) đk : \(x\ne0;x\ne1\)

B=\(\left(\frac{\left(\sqrt{x}-1\right)^2-\left(\sqrt{x}+1\right)^2}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\left(\frac{-2\sqrt{x}}{x-1}\right):\left(\frac{1-x}{2\sqrt{x}}\right)^2\) \(=\frac{-4x}{\left(x-1\right)^3}\)

8 tháng 3 2022

a, Với x >= 0 ; x khác 16 

\(A=\left(\frac{x+5\sqrt{x}-27+\left(3-\sqrt{x}\right)\left(\sqrt{x}+4\right)}{x-16}\right):\frac{1}{\sqrt{x}+4}\)

\(=\left(\frac{x+5\sqrt{x}-27+3\sqrt{x}+12-x-4\sqrt{x}}{x-16}\right):\frac{1}{\sqrt{x}+4}\)

\(=\left(\frac{4\sqrt{x}-15}{x-16}\right):\frac{1}{\sqrt{x}+4}=\frac{4\sqrt{x}-15}{\sqrt{x}-4}\)

b, Ta có \(B=-2A\Rightarrow\sqrt{x}-4=-\frac{8\sqrt{x}-30}{\sqrt{x}-4}\)

\(\Leftrightarrow x-8\sqrt{x}+16=-8\sqrt{x}+30\Leftrightarrow x-14=0\Leftrightarrow x=14\left(tm\right)\)