chứng minh rằng khi m thay đổi thì đường thẳng d có phương trình 2x(m+4)+(m-1)y=m luôn đi qua 1 điểm cố định
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử d đi qua điểm cố định có tọa độ \(\left(x_0;y_0\right)\)
\(\Rightarrow\) Với mọi m ta có:
\(y_0=\left(m+1\right)x_0-3m+4\)
\(\Leftrightarrow m\left(x_0-3\right)+x_0-y_0+4=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0-3=0\\x_0-y_0+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=3\\y_0=7\end{matrix}\right.\)
Vậy với mọi m thì đường thẳng luôn đi qua điểm cố định có tọa độ \(\left(3;7\right)\)
Gọi \(A\left(x;y\right)\) là điểm cố định mà (d) luôn đi qua
\(\Rightarrow y=2mx+m+1\Rightarrow2mx+m+1-y=0\)
Vì khi m thay đổi thì (d) vẫn đi qua điểm A \(\Rightarrow\left\{{}\begin{matrix}x=0\\y=m+1\end{matrix}\right.\)
\(\Rightarrow\) (d) luôn đi qua điểm \(A\left(0,m+1\right)\)
Chắc hàm là \(y=\left(m+1\right)x+m-1\)
Giả sử đường thẳng d đi qua điểm cố định có tọa độ \(A\left(x_0;y_0\right)\), khi đó với mọi m ta luôn có:
\(y_0=\left(m+1\right)x_0+m-1\)
\(\Leftrightarrow m\left(x_0+1\right)+x_0-y_0-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+1=0\\x_0-y_0-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-1\\y_0=-2\end{matrix}\right.\)
Vậy khi m thay đổi thì d luôn đi qua điểm cố định có tọa độ \(\left(-1;-2\right)\)
cho (d) ; y=(m-1)x+m-3 gọi A ,B là giao điểm của (d) và ox,oy . tìm m để tam giác OAB cân giúp e vs
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà đường thẳng đã cho đi qua
\(\Rightarrow\) Với mọi m ta luôn có:
\(\left(2m^2+m+4\right)x_0-\left(m^2-m-1\right)y_0-5m^2-4m-13=0\)
\(\Leftrightarrow\left(2x_0-y_0-5\right)m^2+\left(x_0+y_0-4\right)m+4x_0+y_0-13=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x_0-y_0-5=0\\x_0+y_0-4=0\\4x_0+y_0-13=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=3\\y_0=1\end{matrix}\right.\)
Vậy khi m thay đổi thì đường thẳng luôn đi qua điểm cố định có tọa độ \(\left(3;1\right)\)
Giả sử \(A\left(x_0;y_0\right)\) là điểm cố định mà \(y=\left(m-2\right)x+3m-1\) luôn đi qua \(\forall m\)
\(\Rightarrow y_0=\left(m-2\right)x_0+3m-1\)
\(\Leftrightarrow y_0-mx_0+2x_0-3m+1=0\)
\(\Leftrightarrow m\left(x_0+3\right)-y_0-2x_0-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0+3=0\\-y_0-2x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=-5\end{matrix}\right.\)
Vậy với mọi m đường thẳng đã cho luôn đi qua điểm cố định có tọa độ (-3; -5)
Gọi điểm cố định đó là \(M\left(x_0;y_0\right)\)
Theo đề bài, ta có:
\(y_0=\left(m-2\right)x_0+3m-1\) với mọi m
\(\Leftrightarrow\left(x_0+3\right)m-2x_0-y_0-1=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\2x_0+y_0+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-3\\y_0=5\end{matrix}\right.\)
Vậy đường thẳng đã cho luôn đi qua điểm \(M\left(-3;5\right)\) cố định.