K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2015

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

Tương tự \(\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{a+c}>\frac{c}{a+b+c}\)

=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a+b+c}{a+b+c}=1\)  (1)

\(\frac{a}{a+b}

15 tháng 8 2015

Ta thấy: a/(a+b)>a/(a+b+c)

              b/(b+c)>b/(a+b+c)

              c/(c+a)>c/(a+b+c)

=>M=a/(a+b)+b/(b+c)+c/(c+a)>a/(a+b+c)+b/(a+b+c)+c/(a+b+c)=(a+b+c)/(a+b+c=1

=>M>1(1)

Áp dụng công thức:

Nếu a<b=>a/b<(a+k)/(b+k)           (k thuộc N*)

Ta thấy:a/(a+b)<(a+c)/(a+b+c)

             b/(b+c)<(b+a)/(a+b+c)

             c/(c+a)<(c+b)/(a+b+c)

=>M=a/(a+b)+b/(b+c)+c/(c+a)<(a+c)/(a+b+c)+(b+c)/(a+b+c)+(c+b)/(a+b+c)

=>M<(a+c+b+c+c+b)/(a+b+c)=(2a+2b+2c)/(a+b+c)=2.(a+b+c)/(a+b+c)=2

=>M<2(2)

Từ (1) và (2) ta thấy:

1<M<2

Vì 1 và 2 là 2 số tự nhiên liên tiếp.

=>M không phải là số tự nhiên.

=>ĐPCM

21 tháng 7 2015

ta dựa vào a/b <1 thì a/b < a+c/b+c

=>(a/a+b+c)+(b/a+b+c)+(c/a+b+c)<M<(a+c/a+b+c)+(b+a/a+b+c)+(c+b/a+b+c)

=>1<M<2

=> m ko là số nguyên

click đúng nhé

 

12 tháng 3 2018

a, Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\left(1\right)\)

b, Ta có: \(\frac{a}{a+b}< \frac{a+b}{a+b+c};\frac{b}{b+c}< \frac{b+c}{a+b+c};\frac{c}{c+a}< \frac{c+a}{a+b+c}\)

\(\Rightarrow M< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=\frac{a+b+b+c+c+a}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

Từ (1) và (2) => 1<M<2 hay M không phải là số nguyên

12 tháng 3 2018

Bạn tham khảo nhé 

\(b)\) Ta có : 

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

\(\Rightarrow\)\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\)\(M>1\)\(\left(1\right)\)

Lại có : 

\(\frac{a}{a+b}< \frac{a+c}{a+b+c}\)

\(\frac{b}{b+c}< \frac{a+b}{a+b+c}\)

\(\frac{c}{c+a}< \frac{b+c}{a+b+c}\)

\(\Rightarrow\)\(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow\)\(M< 2\)\(\left(2\right)\)

Từ (1) và (2) suy ra : \(1< M< 2\)

Vậy M không phải là số nguyên 

3 tháng 8 2019

Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)(Theo tính chất của dãy tỉ số bằng nhau)

\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)

9 tháng 8 2016

Ta có a, b, c, d thuộc  N*
\(\Leftrightarrow\)\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)

\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)

\(\frac{c}{b+c+d}>\frac{c}{a+b+c+d} \)

\(\frac{d}{a+c+d}>\frac{d}{a+b+c+d}\)

Cộng vế theo vế, ta có: M>\(\frac{a+b+c+d}{a+b+c+d}\)=1
Vì a, b, c, d thuộcc N* \(\Rightarrow\) \(\frac{a}{a+b+c}< 1 \)\(\Rightarrow\)  \(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
Tương tự, ta có: \(\frac{b}{a+b+d}< \frac{b+c}{a+b+c+d},\frac{c}{b+c+d}< \frac{c+a}{a+b+c+d},\frac{d}{a+c+d}< \frac{d+b}{a+b+c+d}\)

9 tháng 8 2016

Tiếp nha bạn:
Công vế theo vế ta có:
M<\(\frac{a+d+b+c+c+a+d+b}{a+b+c+d} \Rightarrow M< \frac{2a+2b+2c+2d}{a+b+c+d}\)\(\Rightarrow M< \frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)

\(\Rightarrow\) M<2               (2)
 Từ (1) và (2) \(\Rightarrow\)  1<M<2
                      \(\Rightarrow\)   M không có giá trị là số nguyên

26 tháng 3 2016

Gia su : a/a+b > a/a+b+c      (a,b,c thuoc N*)

b/b+c > b/b+c+a

c/a+c > c/c+a+b

=> P > 1   (1)

Mai khac : a/b+c < 1 => a/a+b < a+c/a+b+c   (a,b,c thuoc N*)

                                   b/b+c < b+a/b+c+a

                                   c/c+a < c+b/c+a+b

=> P < 2    (2)

Tu (1) va (2) => 1<P<2

=> P ko phai la so nguyen.

*** k mk nha! >_<