Cho a+b+c=0,a^2+b^2+c^2=1
Tinh a^4+b^4+c^4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^4}{\left(a^2-b^2+c^2\right)\left(a^2+b^2-c^2\right)}=\frac{a^4}{\left[\left(a-b\right)\left(a+b\right)+c^2\right]\left[\left(a-c\right)\left(a+c\right)+b^2\right]}\)
\(\frac{a^4}{\left[-c\left(a-b\right)+c^2\right]\left[-b\left(a-c\right)+b^2\right]}=\frac{a^4}{4bc\left(b+c\right)^2}=\frac{a^4}{4a^2bc}\)
Tương tự với 2 phân thức còn lại, ta cũng có : \(\frac{b^4}{b^4-\left(c^2-a^2\right)^2}=\frac{b^4}{4ab^2c};\frac{c^4}{c^4-\left(a^2-b^2\right)^2}=\frac{c^4}{4abc^2}\)
\(VT=\frac{a^4}{4a^2bc}+\frac{b^4}{4ab^2c}+\frac{c^4}{4abc^2}=\frac{a^4bc+ab^4c+abc^4}{4a^2b^2c^2}=\frac{abc\left(a^3+b^3+c^3\right)}{4a^2b^2c^2}\)
\(VT=\frac{a^3+b^3+c^3}{4abc}\)
Mà \(a+b+c=0\) nên \(a^3+b^3+c^3=3abc\) ( tự cm )
\(\Rightarrow\)\(VT=\frac{3abc}{4abc}=\frac{3}{4}\) ( đpcm )
Chúc bạn học tốt ~
Đặt :
\(A=\)\(\dfrac{a^4}{a^4-\left(b^2-c^2\right)^2}+\dfrac{b^4}{b^4-\left(c^2-a^2\right)^2}+\dfrac{c^4}{c^4-\left(a^2-b^2\right)}\)
\(=\dfrac{a^4}{\left(a^2-b^2+c^2\right)\left(a^2+b^2-c^2\right)}+\dfrac{b^4}{\left(b^2-c^2+a^2\right)\left(b^2+c^2-a^2\right)}+\dfrac{c^4}{\left(c^2-a^2+b^2\right)\left(c^2+a^2-b^2\right)}\)
Ta có : \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2=c^2\)
\(\Leftrightarrow a^2+b^2-c^2=-2ab\)
Tương tự :
+) \(a^2-b^2+c^2=-2ac\)
+) \(b^2+c^2-a^2=-2bc\)
\(\Leftrightarrow A=\dfrac{a^4}{\left(-2ac\right)\left(-2ab\right)}+\dfrac{b^4}{\left(-2ab\right)\left(-2bc\right)}+\dfrac{c^4}{\left(-2bc\right)\left(-2ac\right)}\)
\(=\dfrac{a^4}{4a^2bc}+\dfrac{b^4}{4ab^2c}+\dfrac{c^4}{4abc^2}\)
\(=\dfrac{a^4bc+ab^4c+abc^4}{4a^2b^2c^2}\)
\(=\dfrac{abc\left(a^3+b^3+c^3\right)}{4a^2b^2c^2}\) (cậu tự chứng minh \(a^3+b^3+c^3=3abc\) nhé)
\(=\dfrac{3a^2b^2c^2}{4a^2b^2c^2}\)
\(=\dfrac{3}{4}\)
Vậy..
ta có \(a^2,b^2,c^2\ge0\)
mà \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\Rightarrow a+b+c=0\)
Điều này trái với GT a+b+c=6 \(\Rightarrow\)Đề sai
còn a+b+c=0 và a^2+b^2+c^2=6 thì bài này có nhiều trên mạng lắm search ik
cho bạn nè: https://olm.vn/hoi-dap/question/108981.html
vào đó mà xem nha...
Từ a+b+c=0 có b+c =-a
Suy ra (b+c)^2 = (-a)^2 hay b^2 + c^2 +2bc = a^2
hay b^2 + c^2 -a^2 = -2bc
Suy ra (b^2 + c^2 - a^2)^2 = (-2bc)^2
<=> b^4 + c^4 + a^4 +2b^2.c^2 - 2a^2.b^2 - 2a^2.c^2 = 4b^2.c^2
<=> a^4 + b^4 + c^4 = 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2
<=> 2(a^4 + b^4 + c^4) =a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2
<=> 2(a^4 + b^4 + c^4 ) =(a^2 + b^2 + c^2): Đpcm
Theo đề có \(a+b+c=0 \Rightarrow (a+b+c)^2=0\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)
\(\Rightarrow ab+bc+ca=\frac{0-2}{2} = -1\) (Vì \(a^2+b^2+c^2=2\))
\(\Rightarrow (ab+bc+ca)^2=1 \)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2bc^2a+2ca^2b=1\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2 = 1\) (vì \(a+b+c=0\))
Mặt khác từ `a^2+b^2+c^2=2`
`\Rightarrow(a^2+b^2+c^2)^2=2^2`
`\Rightarrowa^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)=4`
`\Rightarrowa^4+b^4+c^4+2.1=4`
`\Rightarrowa^4+b^4+c^4=4-2=2`
b) Áp dụng bđt Holder ta có:
\(\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\left(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\right)\left(a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\right)\ge\left(a^2+b^2+c^2\right)^3\)
Lại có \(a^2\left(b+c\right)^2+b^2\left(c+a\right)^2+c^2\left(a+b\right)^2\le2a^2\left(b^2+c^2\right)+2b^2\left(c^2+a^2\right)+2c^2\left(a^2+b^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\sqrt{\dfrac{\left(a^2+b^2+c^2\right)^3}{4\left(a^2b^2+b^2c^2+c^2a^2\right)}}\).
Ta chỉ cần chứng minh: \(\dfrac{\sqrt[4]{27\left(a^4+b^4+c^4\right)}}{2}\le\sqrt{\dfrac{\left(a^2+b^2+c^2\right)^3}{4\left(a^2b^2+b^2c^2+c^2a^2\right)}}\Leftrightarrow27\left(a^4+b^4+c^4\right)\left(a^2b^2+b^2c^2+c^2a^2\right)^2\le\left(a^2+b^2+c^2\right)^3\).
Áp dụng bđt AM - GM ta có \(27\left(a^4+b^4+c^4\right)\left(a^2b^2+b^2c^2+c^2a^2\right)^2\le\left(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\right)=\left(a^2+b^2+c^2\right)^2\).
Vậy ta có đpcm.
a) Câu này cũng tương tự: Áp dụng bđt Holder ta có:
\(\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\left(\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\right)\left(a^2b^2+b^2c^2+c^2a^2\right)\ge\left(a^2+b^2+c^2\right)^3\).
Đến đây làm tương tự là ok
a+b+c=0
=>(a+b+c)2=0
=>a2+b2+c2+2(ab+bc+ca)=0
Do a2+b2+c2=1
=>2(ab+bc+ca)=-1
=>ab+bc+ca=-0,5
=>(ab+bc+ca)2=0,25
=>a2b2+b2c2+c2a2+2abc(a+b+c)=0,25
=>a2b2+b2c2+c2a2=0,25(do a+b+c=0)
Từ a2+b2+c2=1
=>(a2+b2+c2)2=1
=>a4+b4+c4+2(a2b2+b2c2+c2a2)=1
=>a4+b4+c4+2.0,25=1
=>a4+b4+c4+0,5=1
=>a4+b4+c4=0,5