Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt cạnh AC ở D, So sánh AD và DC.
A B C D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
=>ΔBAD=ΔBHD
=>DA=DH
b: DA=DH
DH<DC
=>DA<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có
BH=BA
góc HBK chung
=>ΔBHK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
Bài 2:
a: \(\widehat{ABD}=\dfrac{90^0-\widehat{C}}{2}\)
\(\widehat{ADB}=180^0-\widehat{BDC}=180^0-\left(\widehat{C}+\dfrac{\widehat{B}}{2}\right)=\dfrac{360^0-2\widehat{C}-\widehat{B}}{2}\)
\(\widehat{ADB}-\widehat{ABD}=\dfrac{\left(360^0-2\widehat{C}-\widehat{B}-90^0+\widehat{C}\right)}{2}\)
\(=\dfrac{270^0-\widehat{C}-\widehat{B}}{2}=\dfrac{270^0-90^0}{2}=90^0\)
=>\(\widehat{ADB}>\widehat{ABD}\)
=>AB>AD
b: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
mà AB<BC
nên AD<CD
Bài 2:
a: \(\widehat{ABD}=\dfrac{90^0-\widehat{C}}{2}\)
\(\widehat{ADB}=180^0-\widehat{BDC}=180^0-\left(\widehat{C}+\dfrac{\widehat{B}}{2}\right)=\dfrac{360^0-2\widehat{C}-\widehat{B}}{2}\)
\(\widehat{ADB}-\widehat{ABD}=\dfrac{\left(360^0-2\widehat{C}-\widehat{B}-90^0+\widehat{C}\right)}{2}\)
\(=\dfrac{270^0-\widehat{C}-\widehat{B}}{2}=\dfrac{270^0-90^0}{2}=90^0\)
=>\(\widehat{ADB}>\widehat{ABD}\)
=>AB>AD
b: Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
mà AB<BC
nên AD<CD
a: Xét ΔBAD vuông tai A và ΔBHD vuông tại H có
BD chung
góc ABD=góc HBD
Do đó: ΔBAD=ΔBHD
Suy ra: AD=HD
b: ta có: AD=HD
mà HD<DC
nen AD<DC
c: Xét ΔBHK vuông tại H và ΔBAC vuông tạiA có
BH=BA
góc HBK chung
Do đó:ΔBHK=ΔBAC
Suy ra BK=BC
hay ΔBKC cân tại B
Câu B:
Xét hai tam giác vuông ABD và HBD, ta có:
∠B1 = ∠B2 ( vì BD là tia phân giác của góc ABC).
Cạnh huyền BD chung
∠BAD = ∠BHD = 90º
Suy ra: ΔABD = ΔHBD (cạnh huyền, góc nhọn)
⇒ AD = HD (2 cạnh tương ứng) (1)
Trong tam giác vuông DHC có ∠DHC = 90o
⇒ DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền) (2)
Từ (1) và (2) suy ra: AD < DC
Kẻ DH ⊥ BC.
Xét hai tam giác vuông ABD và HBD, ta có:
∠B1 = ∠B2 ( vì BD là tia phân giác của góc ABC).
Cạnh huyền BD chung
∠BAD = ∠BHD = 90º
Suy ra: ΔABD = ΔHBD (cạnh huyền, góc nhọn)
⇒ AD = HD (2 cạnh tương ứng) (1)
Trong tam giác vuông DHC có ∠DHC = 90o
⇒ DH < DC (cạnh góc vuông nhỏ hơn cạnh huyền) (2)
Từ (1) và (2) suy ra: AD < DC
tu D ve DH vuong goc BC tai H
cm tam giac ABD= tam giac BHD (c=g=c)==> AD= DH
tu diem D den duong thang BC ta co
DH la duong vuong goc, DC la duong xien
---> DH< DC ( quan he duong xien duong vuong goc)
ma DH=AD ( cmt)
nen AD <DC
dung ****
AD<DC chắc chắn