K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2021

Ta có : \(\Delta ABC~\Delta A'B'C'\)theo tỉ số đồng dạng \(\frac{2}{5}\)

mà tỉ số diện tích bằng bình phương tỉ số đồng dạng = \(\left(\frac{2}{5}\right)^2=\frac{4}{25}\)

<=> \(\frac{S_{\Delta ABC}}{S_{\Delta A'B'C'}}=\frac{4}{25}\Rightarrow\frac{180}{S_{\Delta A'B'C'}}=\frac{4}{25}\)

<=>180.25=\(S_{\Delta A'B'C'}\).4

<=>4500=\(S_{\Delta A'B'C'}\).4

<=>\(S_{\Delta A'B'C'}\)=1125(cm2)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Nếu \(\Delta A'B'C' = \Delta ABC\) thì tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Vì hai tam giác bằng nhau có các góc tương ứng bằng nhau và các cạnh tương ứng bằng nhau.

Khi đó, \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = 1\end{array} \right.\). Vậy \(\Delta A'B'C'\backsim\Delta ABC\) và tỉ số đồng dạng là 1.

b) Vì \(\Delta A'B'C'\backsim\Delta ABC\) theo tỉ số đồng dạng là \(k\) nên tỉ số đồng dạng là: \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\).

Khi đó, \(\Delta ABC\backsim\Delta A'B'C'\) đồng dạng với tỉ số đồng dạng là: \(\frac{{AB}}{{A'B'}} = \frac{{AC}}{{A'C'}} = \frac{{BC}}{{B'C'}} = \frac{1}{k}\).

Vậy \(\Delta ABC\backsim\Delta A'B'C'\)theo tỉ số \(\frac{1}{k}\).

11 tháng 5 2021

Do tỉ số diện tích bằng bình phương tỉ số đồng dạng nên ta có :

 \(\frac{S_{ABC}}{S_{A'B'C'}}=\left(\frac{2}{7}\right)^2=\frac{2^2}{7^2}=\frac{4}{49}\)

Vậy tỉ số diện tích tam giác ABC và tam giác A'B'C' là 4/49

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

Vì \(\Delta ADE\backsim\Delta AMN\) nên \(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {ADE} = \widehat {AMN};\widehat {AED} = \widehat {ANM}\\\frac{{AD}}{{AM}} = \frac{{AE}}{{AN}} = \frac{{DE}}{{MN}}\end{array} \right.\)

Vì \(DE\) là đường trung bình của tam giác \(AMN\)nên \(DE = \frac{1}{2}MN\)

\( \Rightarrow \left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {ADE} = \widehat {AMN};\widehat {AED} = \widehat {ANM}\\\frac{{AD}}{{AM}} = \frac{{AE}}{{AN}} = \frac{{DE}}{{MN}} = \frac{1}{2}\end{array} \right.\)

\( \Rightarrow AM = 2AD;AN = 2AE;MN = 2DE\)

Lại có, \(\Delta AMN\backsim\Delta ABC\) nên \(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\\\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\end{array} \right.\)

Vì \(MN\) là đường trung bình của tam giác \(ABC\)nên \(MN = \frac{1}{2}BC\)

\(\left\{ \begin{array}{l}\widehat A = \widehat A;\widehat {AMN} = \widehat {ABC};\widehat {ANM} = \widehat {ACB}\\\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}} = \frac{1}{2}\end{array} \right.\)

\( \Rightarrow AB = 2AM;AC = 2AN;BC = 2MN\)

Vì tam giác \(\Delta ADE\backsim\Delta AMN,\Delta AMN\backsim\Delta ABC,\) nên \(\Delta ADE\backsim\Delta ABC\)

Tỉ số đồng dạng là: \(\frac{{AD}}{{AB}} = \frac{{\frac{{AM}}{2}}}{{2AM}} = \frac{1}{4}\).

Vậy tỉ số đồng dạng là \(\frac{1}{4}\).

ủa?nhanh vậy?

24 tháng 3 2020

Ta có

\(\Delta A'B'C'~\Delta A"B"C"\)theo tỉ số đồng dạng \(k_1\Rightarrow A'B'=k_1A"B"\)

\(\Delta A"B"C"~\Delta A'B'C\)theo tỉ số \(k_2=>A"B"=k_2A"B"=>AB=\frac{A"B"}{k_2}\)

từ đó suy ra

\(\frac{A'B'}{AB}=\frac{k_1A"B"}{\frac{A"B"}{k_2}}=k_1k_2\Leftrightarrow\Delta A'B'C~\Delta ABC\)theo tỉ số \(k_1k_2\)