Tìm x:
\(\frac{98}{99}\) + 3 - 3x = \(\frac{192}{49}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{98}{99}+3-3x=\frac{12}{49}\)
\(-3x=\frac{12}{49}-\frac{98}{99}-3=-\frac{3614}{4851}-3=-\frac{18167}{4851}\Leftrightarrow x=-\frac{18167}{14553}\)
a) \(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
Vì 1/99 + 1/98 - 1/97 - 1/96 khác 0
=> x + 100 = 0 => x = -100
b) \(\frac{x-3}{47}+\frac{x-2}{48}=\frac{x-1}{49}+1\)
\(\Rightarrow\frac{x-3}{47}-1+\frac{x-2}{48}-1=\frac{x-1}{49}+1-2\)
\(\Rightarrow\frac{x-50}{47}+\frac{x-50}{48}-\frac{x-50}{49}=0\)
\(\Rightarrow\left(x-50\right)\left(\frac{1}{47}+\frac{1}{48}-\frac{1}{49}\right)=0\)
Vì 1/47 + 1/48 - 1/49 khác 0
Nên x -50 = 0 => x = 50
\(\frac{x-2}{99}+\frac{x-3}{98}=\frac{x-4}{97}+\frac{x-5}{96}\Leftrightarrow\frac{x-2}{99}-1+\frac{x-3}{98}-1=\frac{x-4}{97}-1+\frac{x-5}{96}-1\)
<=>\(\frac{x-101}{99}+\frac{x-101}{98}=\frac{x-101}{97}+\frac{x-101}{96}\)
<=>\(\left(x-101\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)
<=>x-101=0 \(\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\ne0\right)\)
<=>x=101
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow x-101=0\)
\(\Leftrightarrow x=101\)
\(\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=3+\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=1+\frac{1}{99}+1+\frac{1}{98}+1+\frac{1}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}=\frac{100}{99}+\frac{99}{98}+\frac{96}{95}\)
\(\Leftrightarrow\frac{x-1}{99}+\frac{x-2}{98}+\frac{x-5}{95}-\frac{100}{99}-\frac{99}{98}-\frac{96}{95}=0\)
\(\Leftrightarrow\left(\frac{x-1}{99}-\frac{100}{99}\right)+\left(\frac{x-2}{98}-\frac{99}{98}\right)+\left(\frac{x-5}{95}-\frac{96}{95}\right)=0\)
\(\Leftrightarrow\frac{x-101}{99}+\frac{x-101}{98}+\frac{x-101}{95}=0\)
\(\Leftrightarrow\left(x-101\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\right)=0\)
Do \(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}\ne0\)
Mà \(x-101=0\Leftrightarrow x=101\)
Vậy x = 101
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\Leftrightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1=0\)
\(\Leftrightarrow\frac{x+10}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
mà \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)\(\Rightarrow x+100=0\Leftrightarrow x=-100\)
Ta có :
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)
\(\Leftrightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1=-4+4\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
\(\Rightarrow\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)nên \(x+100=0\)
\(\Rightarrow x=0-100=-100\)