\(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)

b)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

a) \(\frac{x+1}{99}+\frac{x+2}{98}=\frac{x+3}{97}+\frac{x+4}{96}\)

\(\Rightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1=\frac{x+3}{97}+1+\frac{x+4}{96}+1\)

\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{98}-\frac{x+100}{97}-\frac{x+100}{96}=0\)

\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)

Vì 1/99 + 1/98 - 1/97 - 1/96 khác 0

=> x + 100 = 0 => x = -100

b) \(\frac{x-3}{47}+\frac{x-2}{48}=\frac{x-1}{49}+1\)

\(\Rightarrow\frac{x-3}{47}-1+\frac{x-2}{48}-1=\frac{x-1}{49}+1-2\)

\(\Rightarrow\frac{x-50}{47}+\frac{x-50}{48}-\frac{x-50}{49}=0\)

\(\Rightarrow\left(x-50\right)\left(\frac{1}{47}+\frac{1}{48}-\frac{1}{49}\right)=0\)

Vì 1/47 + 1/48 - 1/49 khác 0

Nên x -50 = 0 => x = 50

24 tháng 6 2018

\(a)\) \(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)

\(\Leftrightarrow\)\(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+4}{96}+1\right)=-4+4\)

\(\Leftrightarrow\)\(\frac{x+1+99}{99}+\frac{x+2+98}{98}+\frac{x+3+97}{97}+\frac{x+4+96}{96}=0\)

\(\Leftrightarrow\)\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)

\(\Leftrightarrow\)\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)

Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)

Nên \(x+100=0\)

\(\Rightarrow\)\(x=-100\)

Vậy \(x=-100\)

Chúc bạn học tốt ~ 

24 tháng 6 2018

\(b)\) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009}\)

\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)

\(\Leftrightarrow\)\(1-\frac{1}{x+1}=\frac{2008}{2009}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}=1-\frac{2008}{2009}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}=\frac{1}{2009}\)

\(\Leftrightarrow\)\(x+1=2009\)

\(\Leftrightarrow\)\(x=2009-1\)

\(\Leftrightarrow\)\(x=2008\)

Vậy \(x=2008\)

Chúc bạn học tốt ~ 

15 tháng 7 2017

a) \(\frac{x}{4}=\frac{16}{x^2}\)\(=>x^3=16.4\)\(=>x^3=64\)\(=>x=4\)

b) \(\frac{4}{3}:\frac{4}{5}=\frac{2}{3}.\left(\frac{1}{10}.x\right)\)\(=>\frac{4}{3}.\frac{5}{4}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}:\frac{2}{3}=\frac{1}{10}x\)\(=>\frac{5}{3}.\frac{3}{2}=\frac{1}{10}x\)\(=>\frac{5}{2}=\frac{1}{10}x\)\(=>x=\frac{5}{2}:\frac{1}{10}\)\(=>x=\frac{5}{2}.10\)\(=>x=25\)

vậy x=25

15 tháng 7 2017

1.

a) \(\frac{x}{4}=\frac{16}{x^2}\)

\(\Rightarrow x^3=64\)

\(\Rightarrow x^3=4^3\)

\(\Rightarrow x=4\)

b) \(1\frac{1}{3}:0,8=\frac{2}{3}.\left(0,1.x\right)\)

\(\frac{5}{3}=\frac{2}{3}.\frac{x}{10}\)

\(\frac{x}{10}=\frac{5}{2}\)

\(\Rightarrow x=\frac{5.10}{2}=25\)

2.

\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)\)

\(2A=1-\frac{1}{3^{99}}< 1\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)

28 tháng 11 2016

\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\Leftrightarrow\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1=0\)

\(\Leftrightarrow\frac{x+10}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)

\(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)\(\Rightarrow x+100=0\Leftrightarrow x=-100\)

25 tháng 9 2016

x=100

Ta sẽ có: 1-1+1+1-1+1-1+1=0

25 tháng 9 2016

\(\frac{x-1}{99}-\frac{x+1}{101}+\frac{x-2}{98}-\frac{x+2}{102}+\frac{x-3}{97}-\frac{x+3}{103}+\frac{x-4}{96}-\frac{x+4}{104}=0\)

\(\Rightarrow\frac{x-1}{99}-1-\frac{x+1}{101}+1+\frac{x-2}{98}-1-\frac{x+2}{102}+1+\frac{x-3}{97}-1-\frac{x+3}{103}+1+\frac{x-4}{96}-1-\frac{x+4}{104}+1=0\)

\(\Rightarrow\frac{x-100}{99}-\frac{x-100}{101}+\frac{x-100}{98}-\frac{x-100}{102}+\frac{x-100}{97}-\frac{x-100}{103}+\frac{x-100}{96}-\frac{x-100}{104}=0\)

\(\Rightarrow\left(x-100\right).\left(\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\right)=0\)

Vì \(\frac{1}{99}>\frac{1}{101};\frac{1}{98}>\frac{1}{102};\frac{1}{97}>\frac{1}{103};\frac{1}{96}>\frac{1}{104}\)

\(\Rightarrow\frac{1}{99}-\frac{1}{101}+\frac{1}{98}-\frac{1}{102}+\frac{1}{97}-\frac{1}{103}+\frac{1}{96}-\frac{1}{104}\ne0\)

\(\Rightarrow x-100=0\)

\(\Rightarrow x=100\)

Vậy \(x=100\)

25 tháng 9 2016

x thuoc R

20 tháng 7 2016

a/ \(\frac{5x-4}{3-2x}=\frac{7+4x}{x+2}\)     (ĐK: \(x\ne\frac{3}{2};x\ne-2\))

     \(\Rightarrow\left(x+2\right)\left(5x-4\right)=\left(7+4x\right)\left(3-2x\right)\)

     \(\Rightarrow5x^2-4x+10x-8=21-14x+12x-8x^2\)

     \(\Rightarrow13x^2+8x-29=0\)

      \(\Rightarrow13\left(x^2+\frac{8}{13}x-\frac{29}{13}\right)=0\)

     \(\Rightarrow13\left[x^2+2.\frac{4}{13}.x+\left(\frac{4}{13}\right)^2-\left(\frac{4}{13}\right)^2-\frac{29}{13}\right]=0\)

      \(\Rightarrow13\left[\left(x+\frac{4}{13}\right)^2-\frac{393}{169}\right]=0\)

       \(\Rightarrow13\left(x+\frac{4}{13}\right)^2-\frac{393}{13}=0\)

        \(\Rightarrow\left(x+\frac{4}{13}\right)^2=\frac{393}{169}\)

       \(\Rightarrow\orbr{\begin{cases}x+\frac{4}{13}=\sqrt{\frac{393}{169}}=\frac{\sqrt{393}}{13}\Rightarrow x=\frac{-4+\sqrt{393}}{13}\\x+\frac{4}{3}=-\sqrt{\frac{393}{169}}=-\frac{\sqrt{393}}{13}\Rightarrow x=\frac{-4-\sqrt{393}}{13}\end{cases}}\)

        Vậy biểu thức có 2 nghiệm \(x=\left\{\frac{-4+\sqrt{393}}{13};\frac{-4-\sqrt{393}}{13}\right\}\)

b/ \(\frac{x-1}{99}+\frac{x-2}{98}-\frac{x-3}{97}-\frac{x-4}{96}=0\)

   \(\Rightarrow\frac{x-1}{99}-1+\frac{x-2}{98}-1-\left(\frac{x-3}{97}-1\right)-\left(\frac{x-4}{96}-1\right)=0\)

   \(\Rightarrow\frac{x-100}{99}+\frac{x-100}{98}-\frac{x-100}{97}-\frac{x-100}{96}=0\)

   \(\Rightarrow\left(x-100\right)\left(\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}\right)=0\)

    => x - 100 = 0 => x = 100

                                                    Vậy x = 100

28 tháng 9 2017

a) Ta có : \(\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}=\frac{x+5}{11}+\frac{x+5}{13}\)

\(\Rightarrow\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}-\left(\frac{x+5}{11}+\frac{x+5}{13}\right)=0\)

\(\Rightarrow\frac{x+5}{5}+\frac{x+5}{7}+\frac{x+5}{9}-\frac{x+5}{11}-\frac{x+5}{13}=0\)

\(\Rightarrow\left(x+5\right)\left(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}-\frac{1}{11}-\frac{1}{13}\right)=0\)

Do \(\frac{1}{5}+\frac{1}{7}+\frac{1}{9}-\frac{1}{11}-\frac{1}{13}\ne0\)

\(\Rightarrow x+5=0\Rightarrow x=-5\)

Vậy x = -5

b) Ta có : \(\frac{x+2}{100}+\frac{x+3}{99}+\frac{x+4}{98}=\frac{x+5}{97}+\frac{x+6}{96}+\frac{x+7}{95}\)

\(\Rightarrow\frac{x+2}{100}+\frac{x+3}{99}+\frac{x+4}{98}+3=\frac{x+5}{97}+\frac{x+6}{96}+\frac{x+7}{95}+3\)

\(\Rightarrow\frac{x+2}{100}+1+\frac{x+3}{99}+1+\frac{x+4}{98}+1=\frac{x+5}{97}+1+\frac{x+6}{96}+1+\frac{x+7}{95}+1\)

\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}=\frac{x+102}{97}+\frac{x+102}{96}+\frac{x+102}{95}\)

\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}-\left(\frac{x+102}{97}+\frac{x+102}{96}+\frac{x+102}{95}\right)=0\)

\(\Rightarrow\frac{x+102}{100}+\frac{x+102}{99}+\frac{x+102}{98}-\frac{x+102}{97}-\frac{x+102}{96}-\frac{x+102}{95}\)

\(\Rightarrow\left(x+102\right)\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\right)=0\)

Do \(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}-\frac{1}{97}-\frac{1}{96}-\frac{1}{95}\ne0\)

\(\Rightarrow x+102=0\Rightarrow x=-102\)

Vậy x = -102

c) Ta có : (x + 2) - (x + 3) = x + 2 - x - 3

                                      = x - x + 2 - 3

                                      = -1

mà (x + 2) - (x + 3) > 0 => không tồn tại x sao cho (x + 2) - (x + 3) > 0

d) Ta có : \(\left(x-5\right)\left(x+\frac{7}{3}\right)\ge0\)

\(\Rightarrow\orbr{\begin{cases}x\ge5\\x\ge\frac{-7}{3}\end{cases}}\)

\(\Rightarrow x\ge\frac{-7}{3}\)

Vậy \(x\ge\frac{-7}{3}\)

14 tháng 10 2017

a) Do \(2x=3y=-2z\) nên \(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1-1+\left(-2\right)}=\frac{48}{-2}=-24\)    ( do 2x - 3y + 4z = 48 )
Khi đó: 
\(\frac{2x}{1}=-24\)\(\Rightarrow2x=-24\)\(\Rightarrow x=\frac{-24}{2}=-12\)
\(\frac{3y}{1}=-24\)\(\Rightarrow3y=-24\)\(\Rightarrow y=\frac{-24}{3}=-8\)
\(\frac{4z}{-2}=-24\)\(\Rightarrow-2z=-24\)\(\Rightarrow z=\frac{-24}{-2}=12\)
Vậy x = -12 ; y = -8 ; z = 12

14 tháng 10 2017

Vũ Quang Vinh: tks bạn nhiềuu

27 tháng 12 2017

\(bn\)\(xem\)\(lai\)\(giup\)\(mk\)\(cho\)\(\frac{x+522}{7}\)\(neu\)\(thay\)\(bang\)\(\frac{x+552}{7}\)\(thi\)\(dug\)\(hon\)

27 tháng 12 2017

thế thì bạn giải thử xem cô t ra đề thế mà ừ thì cứ cho là x + 552 cx đc