Viết số nghịch đảo của mỗi số sau dưới dạng không chứa dấu căn ở mẫu:
a) \(4\sqrt{3}\)
b) \(3\sqrt{2}+2\sqrt{3}\)
c) \(\dfrac{5+\sqrt{5}}{4\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(1-\dfrac{\sqrt{3}-1}{2}\right):\left(\dfrac{\sqrt{3}-1}{2}+2\right)\)
\(=\left(\dfrac{2}{2}-\dfrac{\sqrt{3}-1}{2}\right):\left(\dfrac{\sqrt{3}-1}{2}+\dfrac{4}{2}\right)\)
\(=\dfrac{2-\left(\sqrt{3}-1\right)}{2}:\dfrac{\left(\sqrt{3}-1\right)+4}{2}\)
\(=\dfrac{3-\sqrt{3}}{2}.\dfrac{2}{\sqrt{3}+3}\)
\(=\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(1+\sqrt{3}\right)}\)
\(=\dfrac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\dfrac{\left(\sqrt{3}-1\right)^2}{2}\)
Vì \(\left\{{}\begin{matrix}\left(\sqrt{3}-1\right)^2>0\\2>0\end{matrix}\right.\) \(\Rightarrow\dfrac{\left(\sqrt{3}-1\right)^2}{2}>0\) hay A>0
=> A có căn bậc 2
Vậy......
b)\(B=\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}\)
\(=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}-\sqrt{5}\right):\dfrac{\sqrt{5}+\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\left(\dfrac{\sqrt{2}\left(3-1\right)}{1-3}-\sqrt{5}\right).\dfrac{5-2}{\sqrt{5}+\sqrt{2}}\)
\(=\left(-\sqrt{2}-\sqrt{5}\right).\dfrac{3}{\sqrt{5}+\sqrt{2}}\)
\(=-\left(\sqrt{2}+\sqrt{5}\right).\dfrac{3}{\sqrt{5}+\sqrt{2}}\)
\(=-3\)
Vì -3 < 0 hay B < 0
=> B không có căn bậc 2
Vậy.....
Bài 1: Đưa thừa số ra ngoài dấu căn:
\(2\sqrt{225a^2}=2.15a=30a\)
Bài 2: Đưa thừa số vào trong dấu căn :
\(x\sqrt{\dfrac{-39}{x}}=\sqrt{x^2.\dfrac{-39}{x}}=\sqrt{-39x}\)
Bài 3: Sắp xếp theo thứ tự tăng dần :
a) \(2\sqrt{3}< 3\sqrt{2}< 2\sqrt{5}< 5\sqrt{2}\)
b) \(4\sqrt{2}< \sqrt{37}< 2\sqrt{15}< 3\sqrt{7}\)
c) \(6\sqrt{\dfrac{1}{3}}< \sqrt{27}< 2\sqrt{28}< 5\sqrt{7}\)
\(a,\dfrac{7}{\sqrt{12}}=\dfrac{7\sqrt{3}}{\sqrt{12}\cdot\sqrt{3}}\)
\(=\dfrac{7\sqrt{3}}{\sqrt{36}}=\dfrac{7\sqrt{3}}{6}\)
\(b,\dfrac{3}{2\sqrt{3}}=\dfrac{3\sqrt{3}}{2\sqrt{3}\cdot\sqrt{3}}\)
\(=\dfrac{3\sqrt{3}}{2\cdot3}=\dfrac{3\sqrt{3}}{6}=\dfrac{\sqrt{3}}{2}\)
\(c,\dfrac{1}{5\sqrt{12}}=\dfrac{\sqrt{3}}{5\cdot2\sqrt{3}\cdot\sqrt{3}}\)
\(=\dfrac{\sqrt{3}}{10\cdot3}=\dfrac{\sqrt{3}}{30}\)
\(d,\dfrac{2\sqrt{3}+3}{4\sqrt{3}}=\dfrac{\sqrt{3}\left(2+\sqrt{3}\right)}{4\sqrt{3}}\)
\(=\dfrac{2+\sqrt{3}}{4}\)
a) \(\dfrac{7}{\sqrt[]{12}}=\dfrac{7}{2\sqrt[]{3}}=\dfrac{7\sqrt[]{3}}{2\sqrt[]{3}.\sqrt[]{3}}=\dfrac{7\sqrt[]{3}}{6}\)
b) \(\dfrac{3}{2\sqrt[]{3}}=\dfrac{\sqrt[]{3}.\sqrt[]{3}}{2\sqrt[]{3}}=\dfrac{\sqrt[]{3}}{2}\)
c) \(\dfrac{1}{5\sqrt[]{12}}=\dfrac{1}{10\sqrt[]{3}}=\dfrac{\sqrt[]{3}}{10\sqrt[]{3}.\sqrt[]{3}}=\dfrac{\sqrt[]{3}}{30}\)
d) \(\dfrac{2\sqrt[]{3}+3}{4\sqrt[]{3}}=\dfrac{\sqrt[]{3}\left(2\sqrt[]{3}+3\right)}{4\sqrt[]{3}.\sqrt[]{3}}=\dfrac{3\left(2+\sqrt[]{3}\right)}{12}=\dfrac{2+\sqrt[]{3}}{4}\)
Bài 1:
a: \(=\sqrt{225}=15\)
b: \(=\sqrt{\dfrac{2}{5}\cdot\dfrac{32}{5}}=\sqrt{\dfrac{64}{25}}=\dfrac{8}{5}\)
c: \(=\sqrt{121\cdot36}=11\cdot6=66\)
d: \(=7\cdot1.2\cdot5=35\cdot1.2=42\)
g: \(=\sqrt{\dfrac{27}{10}\cdot\dfrac{3}{2}\cdot5}=\sqrt{\dfrac{81}{20}\cdot5}=\sqrt{\dfrac{81}{4}}=\dfrac{9}{2}\)
Bài 2:
a: \(=\dfrac{1}{3}\cdot0.8\cdot8=\dfrac{8}{3}\cdot\dfrac{4}{5}=\dfrac{32}{15}\)
b: \(=\sqrt{\dfrac{100}{9}}=\dfrac{10}{3}\)
c: \(=\sqrt{\dfrac{1}{144}\cdot\dfrac{100}{49}}=\dfrac{1}{12}\cdot\dfrac{10}{7}=\dfrac{5}{6\cdot7}=\dfrac{5}{42}\)
a: \(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}=\dfrac{\sqrt{a}\cdot\sqrt{a}-\sqrt{a}}{-\left(\sqrt{a}-1\right)}=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{-\left(\sqrt{a}-1\right)}=-\sqrt{a}\)
b: \(\dfrac{2+\sqrt{3}}{2-\sqrt{7}}=\dfrac{\left(2+\sqrt{3}\right)\left(2+\sqrt{7}\right)}{4-7}\)
\(=\dfrac{-\left(2+\sqrt{3}\right)\left(2+\sqrt{7}\right)}{3}\)
\(=\dfrac{-4-2\sqrt{7}-2\sqrt{3}-\sqrt{21}}{3}\)
c: \(3xy\cdot\sqrt{\dfrac{2}{xy}}=\dfrac{3xy}{\sqrt{xy}}\cdot\sqrt{2}=3\sqrt{2}\cdot\sqrt{xy}\)
d:
\(\dfrac{3}{\sqrt[3]{3}+\sqrt[3]{2}}=\dfrac{3\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)}{3+2}\)
\(=\dfrac{3}{5}\left(\sqrt[3]{9}-\sqrt[3]{6}+\sqrt[3]{4}\right)\)
e:
\(\dfrac{4}{\sqrt{3}+1}-\dfrac{5}{\sqrt{3}-2}+\dfrac{6}{\sqrt{3}-3}\)
\(=\dfrac{4\left(\sqrt{3}+1\right)}{3-1}-\dfrac{5}{2-\sqrt{3}}-\dfrac{6}{3-\sqrt{3}}\)
\(=2\left(\sqrt{3}+1\right)-\dfrac{5\left(2+\sqrt{3}\right)}{4-3}-\dfrac{6\left(3+\sqrt{3}\right)}{6}\)
\(=2\sqrt{3}+2-10-5\sqrt{3}-3-\sqrt{3}\)
\(=-4\sqrt{3}-11\)
f:
\(\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{13}}\)
\(=\dfrac{\sqrt{5}-1}{5-1}+\dfrac{\sqrt{9}-\sqrt{5}}{9-5}+\dfrac{\sqrt{13}-\sqrt{9}}{13-9}\)
\(=\dfrac{-1+\sqrt{5}-\sqrt{5}+\sqrt{9}-\sqrt{9}+\sqrt{13}}{4}=\dfrac{\sqrt{13}-1}{4}\)
\(\dfrac{a-\sqrt{a}}{1-\sqrt{a}}\\ =\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{1-\sqrt{a}}\\ =\dfrac{-\sqrt{a}\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\\ =-\sqrt{a}\\ \dfrac{2+\sqrt{3}}{2-\sqrt{7}}\\ =\dfrac{\left(2+\sqrt{3}\right)\left(2+\sqrt{7}\right)}{4-7}\\ =\dfrac{4+2\sqrt{7}+2\sqrt{3}+\sqrt{21}}{-3}\\\)
\(3xy\sqrt{\dfrac{2}{xy}}\\ =\sqrt{\dfrac{\left(3xy\right)^2\cdot2}{xy}}\\ =\sqrt{\dfrac{9x^2y^2\cdot2}{xy}}\\ =\sqrt{9xy\cdot2}\\ =\sqrt{18xy}\)
\(\dfrac{4}{\sqrt{3}+1}-\dfrac{5}{\sqrt{3}-2}+\dfrac{6}{\sqrt{3}-3}\\ =\dfrac{4\left(\sqrt{3}+1\right)}{3-1}-\dfrac{5\left(\sqrt{3}+2\right)}{3-4}+\dfrac{6\left(\sqrt{3}+3\right)}{3-9}\\ =\dfrac{4\left(\sqrt{3}+1\right)}{2}-\dfrac{5\left(\sqrt{3}+2\right)}{-1}+\dfrac{6\left(\sqrt{3}+3\right)}{-6}\\ =2\sqrt{3}+2+5\sqrt{3}+10-\sqrt{3}-3\\ =6\sqrt{3}+9\)
\(\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{13}}\\ =\dfrac{1-\sqrt{5}}{1-5}+\dfrac{\sqrt{5}-\sqrt{9}}{5-9}+\dfrac{\sqrt{9}-\sqrt{13}}{9-13}\\ =\dfrac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}}{-4}\\ =\dfrac{1-\sqrt{13}}{-4}\)
`# gvy`
a) Để \(\sqrt{\dfrac{x}{3}}\) có nghĩa thì \(\dfrac{x}{3}\ge0\Leftrightarrow x\ge0\)
b) Để \(\sqrt{-5x}\) có nghĩa thì \(-5x\ge0\Leftrightarrow x\le0\)
c) Để \(\sqrt{4-x}\) có nghĩa thì \(4-x\ge0\Leftrightarrow x\le4\)
d) Để \(\sqrt{3x+7}\) có nghĩa thì \(3x+7\ge0\Leftrightarrow x\ge-\dfrac{7}{3}\)
e) Để \(\sqrt{-3x+4}\) có nghĩa thì \(-3x+4\ge0\Leftrightarrow x\le\dfrac{4}{3}\)
f) Để \(\sqrt{\dfrac{1}{-1+x}}\) có nghĩa thì \(\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\)
\(\Leftrightarrow-1+x>0\Leftrightarrow x>1\)
g) Để \(\sqrt{1+x^2}\) có nghĩa thì \(1+x^2\ge0\left(đúng\forall x\right)\)
h) \(\sqrt{\dfrac{5}{x-2}}\) có nghĩ thì \(\left\{{}\begin{matrix}\dfrac{5}{x-2}\ge0\\x-2\ne0\end{matrix}\right.\)
\(\Leftrightarrow x-2>0\Leftrightarrow x>2\)
a) \(\dfrac{1}{4\sqrt{3}}=\dfrac{\sqrt{3}}{12}\)
b) \(\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{3\sqrt{2}-2\sqrt{3}}{6}\)
c) \(\dfrac{4\sqrt{2}}{5+\sqrt{5}}=\dfrac{4\sqrt{2}\left(5-\sqrt{5}\right)}{20}=\dfrac{5\sqrt{2}-\sqrt{10}}{5}\)
\(a.\)
\(\dfrac{1}{4\sqrt{3}}=\dfrac{\sqrt{3}}{12}\)
\(b.\)
\(\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{3\sqrt{2}-2\sqrt{3}}{\left(3\sqrt{2}\right)^2-\left(2\sqrt{3}\right)^2}=\dfrac{3\sqrt{2}-2\sqrt{3}}{6}\)
\(c.\)
\(\dfrac{4\sqrt{2}}{5+\sqrt{5}}=\dfrac{4\sqrt{2}\cdot\left(5-\sqrt{5}\right)}{5^2-\left(\sqrt{5}\right)^2}=\dfrac{\sqrt{2}\cdot\left(5-\sqrt{5}\right)}{5}\)