Cho a,b,c là độ dài 3 cạnh 1 tam giác. CMR:a/(b+c-a)+b/(a+c-b)+c/(a+b-c)>=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b+c-a}+\frac{b}{a+c-b}+\frac{c}{a+b-c}=\frac{a^2}{ab+ac-a^2}+...\)áp dụng svac sơ ta có
>= \(\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)-a^2-b^2-c^2}\)vì a^2+b^2+c^2>=ab+bc+ac và 3(ab+bc+ac)<=(a+b+c)^2 => dpcm
Đặt b+c-a=x,c+a-b=y,a+b-c=z (x,y,z>0 vì a,b,c là độ dài 3 cạnh của 1 tam giác)
Ta có: \(x+y=b+c-a+c+a-b=2c\Rightarrow c=\frac{x+y}{2}\)
Tương tự: \(a=\frac{y+z}{2};b=\frac{z+x}{2}\)
Do đó: \(VT=\frac{\frac{y+z}{2}}{x}+\frac{\frac{z+x}{2}}{y}+\frac{\frac{x+y}{2}}{z}=\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\)
\(\Leftrightarrow2VT=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{y}{x}+\frac{x}{y}\right)\ge2+2+2=6\) (áp dụng BĐT m/n+n/m >= 2)
\(\Leftrightarrow VT\ge3=VP\)
Dấu "=" xảy ra <=> x=y=z <=> a=b=c
P/s: đây là phương pháp đặt ẩn nhé
Đặt \(b+c-a=x,c+a-b=y,a+b-c=z\)(\(x,y,z>0\)vì \(a,b,c\)là độ dài 3 cạnh của 1 tam giác)
Ta có: \(x+y=b+c-a+c+a-b=2c\Rightarrow c=\frac{x+y}{2}\)
Tương tự: \(a=\frac{y+z}{2};b=\frac{z+x}{2}\)
Do đó: \(VT=\frac{\frac{y+z}{2}}{x}+\frac{\frac{z+x}{2}}{y}+\frac{\frac{x+y}{2}}{z}=\frac{y+z}{2x}+\frac{z+x}{2y}+\frac{x+y}{2z}\)
\(\Leftrightarrow2VT=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\left(\frac{x}{z}+\frac{z}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{y}{x}+\frac{x}{y}\right)\ge2+2+2=6\)
(áp dụng BĐT \(\frac{m}{n}+\frac{n}{m}>=2\))
\(\Leftrightarrow VT\ge3=VP\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z\Leftrightarrow a=b=c\)
P/c: Đây là phương pháp đặt ẩn nhé !
a) Thay \(b=a-1\) vào hệ thức thứ hai thì được \(a-1+c=a+4\) hay \(c=5\). Hơn nữa, ta thấy \(a>b\) nên \(b\) không thể là độ dài của cạnh huyền của tam giác vuông được. Sẽ có 2 trường hợp:
TH1: \(a\) là độ dài cạnh huyền. Khi đó theo định lí Pythagoras thì \(b^2+c^2=a^2\) \(\Rightarrow b^2+25=\left(b+1\right)^2\) \(\Leftrightarrow b^2+25=b^2+2b+1\) \(\Leftrightarrow2b=24\) \(\Leftrightarrow b=12\), suy ra \(a=13\). Vậy \(\left(a,b,c\right)=\left(13,12,5\right)\)
TH2: \(c\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras thì \(a^2+b^2=c^2\) \(\Leftrightarrow\left(b+1\right)^2+b^2=25\) \(\Leftrightarrow2b^2+2b-24=0\) \(\Leftrightarrow b^2+b-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}b=3\left(nhận\right)\\b=-4\left(loại\right)\end{matrix}\right.\) \(\Rightarrow a=b+1=4\). Vậy \(\left(a,b,c\right)=\left(4,3,5\right)\)
Như vậy, ta tìm được \(\left(a,b,c\right)\in\left\{\left(13,12,5\right);\left(4,3,5\right)\right\}\)
b) Bạn không nói rõ b', c' là gì thì mình không tính được đâu. Mình tính b, c trước nhé.
Do \(b:c=3:4\) nên rõ ràng \(c>b\). Vì vậy \(b\) không thể là độ dài cạnh huyền được. Sẽ có 2TH
TH1: \(c\) là độ dài cạnh huyền. Khi đó theo định lý Pythagoras thì \(a^2+b^2=c^2\). Do \(b:c=3:4\) nên \(b=\dfrac{3}{4}c\). Đồng thời \(a=125\) \(\Rightarrow125^2+\left(\dfrac{3}{4}c\right)^2=c^2\) \(\Rightarrow\dfrac{7}{16}c^2=125^2\) \(\Leftrightarrow c=\dfrac{500}{\sqrt{7}}\) \(\Rightarrow b=\dfrac{375}{\sqrt{7}}\). Vậy \(\left(b,c\right)=\left(\dfrac{375}{\sqrt{7}},\dfrac{500}{\sqrt{7}}\right)\)
TH2: \(a\) là độ dài cạnh huyền. Khi đó cũng theo định lý Pythagoras, ta có \(b^2+c^2=a^2=125^2\). Lại có \(b:c=3:4\Rightarrow\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{b^2}{9}=\dfrac{c^2}{16}=\dfrac{b^2+c^2}{25}=\dfrac{125^2}{25}=625\)
\(\Rightarrow b^2=5625\Rightarrow b=75\) \(\Rightarrow c=100\). Vậy \(\left(b,c\right)=\left(75,100\right)\).
Như vậy, ta tìm được \(\left(b,c\right)\in\left\{\left(75,100\right);\left(\dfrac{350}{\sqrt{7}};\dfrac{500}{\sqrt{7}}\right)\right\}\)
<=> \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{a}{c}-\frac{c}{b}-\frac{b}{c}\ge0\)
<=> \(\frac{a-c}{b}+\frac{c^2-a^2}{ac}\ge0\)
<=>\(\frac{a^2c-ac^2+bc^2-a^2b}{abc}\ge0\)
Vì abc luôn dương vì a,b,c là độ dài của cạnh tam giác
=> để bất đẳng thức trên đúng : \(a^2c-ac^2+bc^2-a^2b\ge0\)
Vì a,b,c là 3 cạnh trong tam giác nên
\(a\ge b-c\),... Tương tự
<=> \(a^2c-ac^2+bc^2-a^2b=\left(b-a\right)c^2+\left(c-b\right)a^2\ge\left(b-a\right)^2c+\left(c-b\right)^2a\ge0\)
=> ĐPCM
đặt: x = b + c - a > 0
y = a + c - b > 0
z = a + b - c > 0
\(\Rightarrow a=\frac{\left(y+z\right)}{2}\)
\(b=\frac{\left(x+z\right)}{2}\)
\(c=\frac{\left(x+y\right)}{2}\)
\(A=\frac{a}{\left(b+c-a\right)}+\frac{b}{\left(a+c-b\right)}+\frac{c}{\left(a+b-c\right)}\)
\(A=\frac{\left(y+z\right)}{\left(2x\right)}+\frac{\left(x+z\right)}{\left(2y\right)}+\frac{\left(x+y\right)}{\left(2z\right)}\)
\(A=\frac{1}{2}.\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{y}{z}+\frac{z}{y}\right)\)
áp dụng BĐT Cauchy-Schwarz, ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(\frac{x}{z}+\frac{z}{x}\ge2\)
\(\frac{y}{z}+\frac{z}{y}\ge2\)
Cộng các BĐT trên, ta được:
\(\left(\frac{x}{y}+\frac{y}{x}+\frac{x}{z}+\frac{z}{x}+\frac{z}{y}\right)\ge6\)
\(\Rightarrow A\ge\frac{1}{2}.3=6\)(đpcm).
Vì sao a=\(\frac{y+z}{2}\)