Cho tam giác ABC, AD là đường cao, trực tâm H là trung điểm AD.C/m: tanB.tanC=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$BH$ cắt $AC$ tại $M$. Do $H$ là trực tâm nên $AM\perp AC$
Ta có:
\(\widehat{HBD}=90^0-\widehat{BHD}=90^0-\widehat{MHA}=\widehat{MAH}=\widehat{CAD}\)
Xét tam giác $BHD$ và $ACD$ có:
\(\widehat{HBD}=\widehat{CAD}\) (cmt)
\(\widehat{BDH}=\widehat{ADC}(=90^0)\)
\(\Rightarrow \triangle BHD\sim \triangle ACD(g.g)\Rightarrow \frac{HD}{BD}=\frac{CD}{AD}\)
\(\Leftrightarrow \frac{AD}{2BD}=\frac{CD}{AD}\) (do $H$ là trung điểm cùa $AD$ nên $2HD=AD$)
\(\Leftrightarrow \frac{AD}{BD}.\frac{AD}{CD}=2\)
\(\Leftrightarrow \tan B.\tan C=2\) (đpcm)
Bạn tham khảo lời giải tại link sau:
Câu hỏi của ITACHY - Toán lớp 9 | Học trực tuyến
a: O là giao điểm của 3 đường trung trực của ΔABC
=>O là tâm đường tròn ngoại tiếp ΔABC
=>AM là đường kính của (O)
Xét (O) có
ΔABM nội tiếp đường tròn
AM là đường kính
=>ΔABM vuông tại B
=>BM vuông góc AB
=>BM//CH
Xét (O) có
ΔACM nội tiếp
AM là đường kính
=>ΔAMC vuông tại C
=>AC vuông góc CM
=>CM//BH
Xét tứ giác BHCM có
BH//CM
BM//CH
=>BHCM là hình bình hành
=>BC cắt HM tại trung điểm của mỗi đường
=>I là trung điểm của HM
b: Xét ΔMAH có
O,I lần lượt là trung điểm của MA,MH
=>OI là đường trung bình
=>OI//AH và OI=1/2AH
=>AH=2OI
Ta cần chứng minh H là trực tâm của tam giác ASM. Với mục đích này, ta sẽ sử dụng tính chất của hình chữ nhật.
Vì M là trung điểm BC, ta có BM = MC. Do đó, SM là đường trung trực của BC.
Vì EF ⊥ BE và CF, nên EF song song với đường BC (vì BE // CF). Do đó, S nằm trên đường trung trực của BC.
Vì H là giao điểm của AD và BE, ta có AH ⊥ BC và BH ⊥ AC. Do đó, AH // SM và BH // SM.
Khi đó, ta suy ra được rằng tứ giác ABSH là hình chữ nhật (do có 2 cặp cạnh đối nhau là song song và bằng nhau).
Do AS là đường chéo của hình chữ nhật ABSH, nên H là trực tâm của tam giác ASM.
Vậy, H là trực tâm của tam giác ASM.
Bạn nhầm đề không vậy:), s là giao điểm cả ef và bc mà suy ra được s là trung trực của bc dc hả?:) nhân tài đất Việt đây rồi !! 🤣🤣🤣🤣🤣
a: AH<AD
=>H nằm giữa B và D
b: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
=>ΔBAE=ΔBDE
=>EA=ED
mà BA=BD
nên BE là trung trực của AD
c: góc CAD+góc BAD=90 độ
góc HAD+góc BDA=90 độ
mà góc BAD=góc BDA
nên góc CAD=góc HAD
=>AD là phân giác của góc HAC
Ke BH vuong goc voi Ac tai I.
Goc ACD+DAC=90 do.
Goc DAC+AHI=90 do.
Ma AHI=BHD(doi dinh).
=>BHD=ACD.
=>tanBHD=tanACD=BD/HD.
=>tanB.tanC
=AD/BD.BD/HD=2
đơn giản quá
k mk nha
AI K MK MK K LẠI
NHỚ ĐÓ
CẤM COPPY